Answer:
you will find 3 in aluminium
hydrogen should be b 3
and oxygen is 9
Yes the reaction given above does exist
First of all CaCl2 will react with water to form CaO and HCl then it will react with CO2 to form <span>CaCO3
</span>CaCO3 + 2HCl <span>>>></span> CaCl2+CO2+H20
so i conclude it does exist
hope it helps
Answer:
50 ml (5x TBE) + 540 ml (water)
Explanation:
To prepare 0.5x TBE solution from 5x TBE solution we need to use the following dilution formula:
C1 x V1 = C2 x V2, where:
- C1, V1 = Concentration/amount (start), and Volume (start)
- C2, V2 = Concentration/amount (final), and Volume (final)
* So when we applied this formula it will be:
5 x V1 = 0.5 x 500
V1= 50ml
- To prepare 0.5x we will take 50ml from 5x and completed with 450ml water and the final volume will going to be 500ml.
Given :
Mass of oxygen containing carbon monoxide (CO) is 2.666 gram .
To Find :
How many grams of carbon (C) would be present in carbon monoxide (CO) that contains 2.666 grams of oxygen (O) .
Solution :
By law of constant composition , a given chemical compound always contains its component elements in fixed ratio (by mass) and does not depend on its source and method of preparation.
So , volume of solution does not matter .
Moles of oxygen ,
.
Now , molecule of CO contains 1 mole of C .
So , moles of C is also 0.167 mole .
Mass of carbon ,
.
Therefore , mass of carbon is 2 grams .
Hence , this is the required solution .
We will use the expression for freezing point depression ∆Tf
∆Tf = i Kf m
Since we know that the freezing point of water is 0 degree Celsius, temperature change ∆Tf is
∆Tf = 0C - (-3°C) = 3°C
and the van't Hoff Factor i is approximately equal to 2 since one molecule of KCl in aqueous solution will produce one K+ ion and one Cl- ion:
KCl → K+ + Cl-
Therefore, the molality m of the solution can be calculated as
3 = 2 * 1.86 * m
m = 3 / (2 * 1.86)
m = 0.80 molal