Using probability concepts, it is found that:
a)
probability of drawing a card below a 6.
b)
odds of drawing a card below a 6.
c) We should expect to draw a card below 6 about 4 times out of 13 attempts, which as an odd, it also 4 times for every 9 times we draw a card above 6, which is the third option.
------------------------------
- A probability is the <u>number of desired outcomes divided by the number of total outcomes</u>.
Item a:
- In a standard deck, there are 52 cards.
- There are 4 types of cards, each numbered 1 to 13. Thus,
are less than 6.
Then:

probability of drawing a card below a 6.
Item b:
- Converting from probability to odd, it is:

odds of drawing a card below a 6.
Item c:
- The law of large numbers states that with a <u>large number of trials, the percentage of each outcome is close to it's theoretical probability.</u>
- Thus, we should expect to draw a card below 6 about 4 times out of 13 attempts, which as an odd, it also 4 times for every 9 times we draw a card above 6, which is the third option.
A similar problem is given at brainly.com/question/24233657
31.25 miles because I don’t know
C * 5 = 30
Divide both sides by 5
c = 6
Answer:
5 31/30 or 181/30
Step-by-step explanation:
The congruent statement and the reason why the triangles are congruent is (b) ΔUVZ ≅ ΔVYX, SSS
<h3>How to determine the congruent statement and the reason?</h3>
From the question, we have the following parameters that can be used in our computation:
Triangles = UVZ and VYX
There are several theorems that make any two triangles to be congruent
One of these theorems is the SSS congruent theorem
The SSS congruent theorem implies that the corresponding sides of the triangles in question are congruent
From the question, we can see that the following corresponding sides on the triangles UVZ and VYX have the same mark
UV and VY
UZ and VX
VZ and YX
This implies that these sides are congruent sides
Hence, the congruent statement on the congruency of the triangles is (b) ΔUVZ ≅ ΔVYX and the reason is by SSS
Read more about congruent triangles at
brainly.com/question/1675117
#SPJ1