Answer:
2NO(g) + O2(g) --> 2NO2(g)
now 400 ml of NO × 2 mol of NO2/2 mol of NO
= 400 ml of NO2
now 500 ml of O2 × 2 mol of NO2/1 mol of O2
= 1000 ml of NO2
now 400 ml of NO2 × 1 mol of O2/2 mol of NO
= 200 ml
subtract that from 500 ml of total i.e. 500-200 =300 ml
The total volume of the reaction mixture is 1000 ml -300ml = 700 ml
Answer:
-5.51 kJ/mol
Explanation:
Step 1: Calculate the heat required to heat the water.
We use the following expression.

where,
- c: specific heat capacity
- m: mass
- ΔT: change in the temperature
The average density of water is 1 g/mL, so 75.0 mL ≅ 75.0 g.

Step 2: Calculate the heat released by the methane
According to the law of conservation of energy, the sum of the heat released by the combustion of methane (Qc) and the heat absorbed by the water (Qw) is zero
Qc + Qw = 0
Qc = -Qw = -22.0 kJ
Step 3: Calculate the molar heat of combustion of methane.
The molar mass of methane is 16.04 g/mol. We use this data to find the molar heat of combustion of methane, considering that 22.0 kJ are released by the combustion of 64.00 g of methane.

An organism that is able to form nutritional organic substances from simple inorganic substances such as carbon dioxide.
Answer:
Explanation:
Pro – Low carbon. Unlike traditional fossil fuels like coal, nuclear power does not produce greenhouse gas emissions like methane and CO2. ...
Con – If it goes wrong… ...
Pro – Not intermittent. ...
Con – Nuclear waste. ...
Pro – Cheap to run. ...
Con – Expensive to build