Answer:
Option B. 4 moles of the gaseous product
Explanation:
Data obtained from the question include:
Initial volume (V1) = V
Initial number of mole (n1) = 2 moles
Final volume (V2) = 2V
Final number of mole (n2) =..?
Applying the Avogadro's law equation, we can obtain the number of mole of the gaseous product as follow:
V1/n1 = V2/n2
V/2 = 2V/n2
Cross multiply
V x n2 = 2 x 2V
Divide both side by V
n2 = (2 x 2V)/V
n2 = 2 x 2
n2 = 4 moles
Therefore, 4 moles of the gaseous product were produced.
Answer:
The specific heat of the metal is 0.466 
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
The equation that allows calculating heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
In this case:
- Q= 2330 J
- c= ?
- m= 25 g
- ΔT= 200 °C
Replacing:
2330 J= c*25 g* 200 °C
Solving:

c=0.466 
<u><em>The specific heat of the metal is 0.466 </em></u>
<u><em></em></u>
Mass of molecule (g) = Mr of substance over avarogado constant
Answer:
The answer to your question is P = 0.18 atm
Explanation:
Data
mass of O₂ = 0.29 g
Volume = 2.3 l
Pressure = ?
Temperature = 9°C
constant of ideal gases = 0.082 atm l/mol°K
Process
1.- Convert the mass of O₂ to moles
16 g of O₂ -------------------- 1 mol
0.29 g of O₂ ---------------- x
x = (0.29 x 1)/16
x = 0.29/16
x = 0.018 moles
2.- Convert the temperature to °K
Temperature = 9 + 273 = 282°K
3.- Use the ideal gas law ro find the answer
PV = nRT
-Solve for P
P = nRT/V
-Substitution
P = (0.018 x 0.082 x 282) / 2.3
-Simplification
P = 0.416/2.3
-Result
P = 0.18 atm
C) and d) are physical changes while b) is chemical