<h3>
Answer:</h3>
5.89%
<h3>
Explanation:</h3>
We are given;
- Mass of the solute, LiOH as 40.1 g
- Mass of the solvent, H₂O as 681 g
We are required to calculate the mass percent composition of solution;
- But; How do we calculate the mass percent composition of a solution?
- We use the formula;
- Mass composition of a solution = (Mass of solute/mass of solution) 100%
Mass Percent = (40.1 g/681 g)× 100%
= 5.888 %
= 5.89%
Therefore, the mass percent composition of the solution is 5.89%
Dimensional analysis is a convenient technique to determine if the solution you're following would lead you to the answer that you're looking for. It is the manipulation of units. Like units are cancelled whenever they appear on the numerator and the denominator side. For example, if the speed is 5 m/s and the time is 2 s, the distance would be:
(m/s)*(s) = m
So, you would know that the solution would be 5*2 because it yields the unit for distance.
Hence, dimensional analysis could prevent crash by calculating the right velocities or distances of the two vessels to prevent collision.
This question is dealing with the half-life of carbon-14 which can be used to determine the age of a substance according to the following equation:
t = [ln(N/No)/(-ln2)] · t1/2
N = # of carbon-14 atoms presently = 250 atoms
No = # of carbon-14 atoms initially = 1000 atoms
t1/2 = half-life = 5730 years for carbon-14
We can now input all of the information into the formula to find the age of the fossil:
t = [ln (250/1000)/-ln2] x 5730 years
t = 11460 years
The fossil should be found to be roughly 11,460 years old.
Answer:
The question is incomplete and confusing.
- In the complete ionic equation you write all the ions that are formed. Those are: Pb²⁺, NO₃⁻, K⁺, and I⁻. They all are present in the complete ionic equation.
- In the net ionic equation, the spectator ions do not appear. They are: NO₃⁻ and K⁺. They would not be present in the net ionic equation, but they do in the complete ionic equation.
See below the details.
Explanation:
Which compound will not form ions?
<u />
<u>1. Write the balanced molecular equation:</u>
- Pb(NO₃)₂(aq) + 2KI(aq) → PbI₂(s) + 2KNO₃(aq)
<u />
<u>2. Write the ionizations for the ionic aqueous compounds:</u>
<u />
- Pb(NO₃)₂(aq) → Pb⁺²(aq) + 2NO₃⁻(aq)
- 2KI(aq) → 2K⁺(aq) + 2I⁻(aq)
- 2KNO₃(aq) → 2K⁺(aq) + 2NO₃⁻(aq)
<u />
<u>3. Write the complete ionic equation:</u>
Pb⁺²(aq) + 2NO₃⁻(aq) + 2K⁺(aq) + 2I⁻(aq) → PbI₂(s) + 2K⁺(aq) + 2NO₃⁻(aq)
Hence, since PbI₂(s) does not ionize, but stays in solid form, it will not form ions.
All, Pb⁺², NO₃⁻, K⁺, and I⁻ will be present in the total ionic equation.
It is in the net ionic equation that the spectator ions are removed. Those, are NO₃⁻ and K⁺, because they are on both sides of the complete ionic equation.
<span>The
Pair Of Compounds that Are Isomers are CH3COCH3 and CH3CH2CHO. The answer is
number 4. Isomers have the same formula but different structures. In number 4,
both compounds contains three carbon atoms, one oxygen and 6 hydrogen atoms
that makes them isomers.</span>