Answer:
E = 2.05×10⁻²³ J
Explanation:
Given data:
Wavelength of transmission = 9.7 mm (9.7/1000 = 0.0097 m)
Energy of transition = ?
Solution:
9.7 mm (9.7/1000 = 0.0097 m)
9.7×10⁻³ m
Formula:
E = hc/λ
By putting values,
E = 6.63 ×10⁻³⁴ Js × 3×10⁸ m/s / 9.7×10⁻³ m
E = 19.89×10⁻²⁶ J.m / 9.7×10⁻³ m
E = 2.05×10⁻²³ J
Answer:
9.57 mol.
Explanation:
<em>Molarity is defined as the no. of moles of a solute per 1.0 L of the solution.</em>
<em />
<em>M = (no. of moles of solute)/(V of the solution (L)).</em>
<em></em>
∴ M = (no. of moles of sucrose)/(V of the solution (L)).
1.1 M = (no. of moles of sucrose)/(8.7 L).
<em>∴ no. of moles of sucrose = (1.1 M)(8.7 L) = 9.57 mol.</em>
The wavelengths of light that an atom gives off when an electron falls to a lower energy level corresponds to Emission spectrum , Option D is the correct answer.
<h3>What is Emission Spectrum ?</h3>
Light is absorbed or emitted when an electron jumps or falls into an energy level.
The energy of light absorbed or emitted is equal to the difference between the energy of the orbits.
Therefore , the wavelengths of light that an atom gives off when an electron falls to a lower energy level corresponds to Emission spectrum.
To know more about Emission Spectrum
brainly.com/question/13537021
#SPJ1
Answer
Avogadro's number: One mole of any substance contains 6.022×10²³ molecules
Explanation
While finding the number of moles of oxygen molecules present in 3.65 moles of Na2SO4 the conversion factor used would be Avodagro's number, which is
One mole of any substance contains 6.022×10²³ molecules.