The percentage yield obtained from the given reaction above is 74.8%
<h3>Balanced equation </h3>
P₄ + 6Cl₂ → 4PCl₃
Molar mass of P₄ = 31 × 4 = 124 g/mol
Mass of P₄ from the balanced equation = 1 × 124 = 124 g
Molar mass of PCl₃ = 31 + (35.5×3) = 137.5 g/mol
Mass of PCl₃ from the balanced equation = 4 × 137.5 = 550 g
<h3>SUMMARY</h3>
From the balanced equation above,
124 g of P₄ reacted to produce 550 g of PCl₃
<h3>How to determine the theoretical yield </h3>
From the balanced equation above,
124 g of P₄ reacted to produce 550 g of PCl₃
Therefore,
79.12 g of P₄ will react to produce = (79.12 × 550) / 124 = 350.9 g of PCl₃
<h3>How to determine the percentage yield </h3>
- Actual yield of PCl₃ = 262.6 g
- Theoretical yield of PCl₃ = 350.9 g
Percentage yield = (Actual /Theoretical) × 100
Percentage yield = (262.6 / 350.9) × 100
Percentage yield = 74.8%
Learn more about stoichiometry:
brainly.com/question/14735801
Do a quick conversion: 1 grams Co2 = 0.0084841820909097 mole using the molecular weight calculator and the molar mass of Co2.
Arm. The center is the yellow, in the very middle. I hope this helps.
Answer:
V₂ = 530.5 mL
Explanation:
Given data:
Initial temperature = 20.0°C
Final temperature = 40.0 °C
Final volume = 585 mL
Initial volume = ?
Solution:
Initial temperature = 20.0°C (20+273 = 293 K)
Final temperature = 40.0 °C (40+273 = 323 K)
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₁ = V₂T₁ /T₂
V₂ = 585 mL × 293 K / 323 K
V₂ = 171405 mL.K / 323 K
V₂ = 530.5 mL