Answer:
9.81N
Explanation:
the force of attraction is given by
F=<u>GmM</u><u>/</u><u>R²</u><u> </u>
where m is mass of the body
M is mass of the earth
R is radius of the earth
G is the universal gravitational constant(6.67x10-¹¹)
hence we substitute the values in the formula.
<em> </em><em>you</em><em> </em><em>can</em><em> </em><em>ask</em><em> </em><em>questions</em>
The kinetic energy of the mass at the instant it passes back through its equilibrium position is about 1.20 J

<h3>Further explanation</h3>
Let's recall Elastic Potential Energy formula as follows:

where:
<em>Ep = elastic potential energy ( J )</em>
<em>k = spring constant ( N/m )</em>
<em>x = spring extension ( compression ) ( m )</em>
Let us now tackle the problem!

<u>Given:</u>
mass of object = m = 1.25 kg
initial extension = x = 0.0275 m
final extension = x' = 0.0735 - 0.0275 = 0.0460 m
<u>Asked:</u>
kinetic energy = Ek = ?
<u>Solution:</u>
<em>Firstly , we will calculate the spring constant by using </em><em>Hooke's Law</em><em> as follows:</em>






<em>Next , we will use </em><em>Conservation of Energy</em><em> formula to solve this problem:</em>







<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Elasticity
Answer:
I = 0.002593 A = 2.593 mA
Explanation:
Current density = J = (3.00 × 10⁸)r² = Br²
B = (3.00 × 10⁸) (for ease of calculations)
The current through outer section is given by
I = ∫ J dA
The elemental Area for the wire,
dA = 2πr dr
I = ∫ Br² (2πr dr)
I = ∫ 2Bπ r³ dr
I = 2Bπ ∫ r³ dr
I = 2Bπ [r⁴/4] (evaluating this integral from r = 0.900R to r = R]
I = (Bπ/2) [R⁴ - (0.9R)⁴]
I = (Bπ/2) [R⁴ - 0.6561R⁴]
I = (Bπ/2) (0.3439R⁴)
I = (Bπ) (0.17195R⁴)
Recall B = (3.00 × 10⁸)
R = 2.00 mm = 0.002 m
I = (3.00 × 10⁸ × π) [0.17195 × (0.002⁴)]
I = 0.0025929449 A = 0.002593 A = 2.593 mA
Hope this Helps!!!
Answer:a)1.11×10^-21Nm
b) 1.16×10^-3m
Explanation:see attachment
Answer:
Calorimetry
Explanation:
In the calorimetry experiments, mix a known amount of a high temperature material, about 100 ° C, with an equivalent amount of water at room temperature. In a device thermally isolated from the environment, and the initial and final temperatures of liquid and solid are analyzed and energy conservation relationships, the specific heat of the unknown material can be found.