Given,
A player kicks a soccer hits at an angle of 30° at a speed of 26 m/s
We can resolute the trajectory of soccer into horizontal and vertical components.(Please see the attached file)
We can have,
Horizontal velocity component of ball= 26cos(30°) = 26×(√3÷2) = 22.51 m/s
And vertical velocity component of ball = 26sin(26°) = 26×(1÷2) = 13 m/s
Answer:
Angular velocity is same as frequency of oscillation in this case.
ω =
x ![[\frac{L^{2}}{mK}]^{3/14}](https://tex.z-dn.net/?f=%5B%5Cfrac%7BL%5E%7B2%7D%7D%7BmK%7D%5D%5E%7B3%2F14%7D)
Explanation:
- write the equation F(r) = -K
with angular momentum <em>L</em>
- Get the necessary centripetal acceleration with radius r₀ and make r₀ the subject.
- Write the energy of the orbit in relative to r = 0, and solve for "E".
- Find the second derivative of effective potential to calculate the frequency of small radial oscillations. This is the effective spring constant.
- Solve for effective potential
- ω =
x ![[\frac{L^{2}}{mK}]^{3/14}](https://tex.z-dn.net/?f=%5B%5Cfrac%7BL%5E%7B2%7D%7D%7BmK%7D%5D%5E%7B3%2F14%7D)