False.
The force of friction is always the direction opposite of the object's movement.
Answer:
The total work done by the two tugboats on the supertanker is 3.44 *10^9 J
Explanation:
The force by the tugboats acting on the supertanker is constant and the displacement of the supertanker is along a straight line.
The angle between the 2 forces and displacement is ∅ = 15°.
First we have to calculate the work done by the individual force and then we can calculate the total work.
The work done on a particle by a constant force F during a straight line displacement s is given by following formula:
W = F*s
W = F*s*cos∅
With ∅ = the angles between F and s
The magnitude of the force acting on the supertanker is F of tugboat1 = F of tugboat 2 = F = 2.2 * 10^6 N
The total work done can be calculated as followed:
Wtotal = Ftugboat1 s * cos ∅1 + Ftugboat2 s* cos ∅2
Wtotal = 2Fs*cos∅
Wtotal = 2*2.2*10^6 N * 0.81 *10³ m s *cos15°
Wtotal = 3.44*10^9 Nm = <u>3.44 *10^9 J</u>
<u />
The total work done by the two tugboats on the supertanker is 3.44 *10^9 J
Complete question is;
Shoveling snow can be extremely taxing since the arms have such a low efficiency in this activity. Suppose a person shoveling a sidewalk metabolizes food at the rate of 800 W. (The efficiency of a person shoveling is 3%.)
(a) What is her useful power output? (b) How long will it take her to lift 3000 kg of snow 1.20 m? (This could be the amount of heavy snow on 20 m of footpath.) (c) How much waste heat transfer in kilojoules will she generate in the process?
Answer:
A) P_out = 24 W
B) t = 1470 s
C) Q = 1140.72 KJ
Explanation:
We are given;
Input Power; P_in = 800 W
Efficiency; η = 3% = 0.03
A) Formula for efficiency is;
η = P_out/P_in
Making P_out the subject, we have;
P_out = η•P_in
P_out = 0.03 × 800
P_out = 24 W
B) We know that;
Power = work done/time taken
Thus;
P_out = mgh/t
We are given;
m = 3000 kg
h = 1.20 m
Thus, time is;
t = (3000 × 9.8 × 1.2)/24
t = 1470 s
C) amount of heat wasted is calculated from;
Q = (P_in - P_out)t
Q = (800 - 24) × 1470
Q = 1,140,720 J
Q = 1140.72 KJ
Answer:
Most of what we know about the interior of the Earth comes from the study of seismic waves from earthquakes. Seismic waves from large earthquakes pass throughout the Earth. These waves contain vital information about the internal structure of the Earth.