Out of the four options presented in this problem, the most probable answer would be A. humidity.
Weather has many characteristics which includes, but are not limited, to air temperature, wind speed, the directions of the wind, cloud cover, the type of clouds present, amount of precipitation, the type of precipitation, and of course humidity. Although B. winds is an option, it isn't ultimately a main characteristic since some weathers doesn't involve winds too much. The humidity, however, is present in all kinds of weather. The other characteristics help in differentiating which weather to which weather.
Answer:
The answer is "512 J".
Explanation:
bullet mass 
initial speed 
block mass
initial speed
final speed 
Let
will be the bullet speed after collision:
throughout the consevation the linear moemuntum
The kinetic energy of the bullet in its emerges from the block


Question:
<em>What happens to electrical energy that is used by objects in our homes? (1 point)</em>
<em>a It is absorbed by batteries. </em>
<em>b It is destroyed. </em>
<em>c It is stored in solar panels. </em>
<em>d It is transformed into other forms of energy.</em>
<em />
Answer:
D
Answer:

Explanation:
We know that acceleration is change in velocity over time.


v is the final velocity and u is the initial velocity.
Solve for v.
Multiply both sides by t.

Add u to both sides.

Answer:
v = 2.94 m/s
Explanation:
When the spring is compressed, its potential energy is equal to (1/2)kx^2, where k is the spring constant and x is the distance compressed. At this point there is no kinetic energy due to there being no movement, meaning the net energy in the system is (1/2)kx^2.
Once the spring leaves the system, it will be moving at a constant velocity v, if friction is ignored. At this time, its kinetic energy will be (1/2)mv^2. It won't have any spring potential energy, making the net energy (1/2)mv^2.
Because of the conservation of energy, these two values can be set equal to each other, since energy will not be gained or lost while the spring is decompressing. That means
(1/2)kx^2 = (1/2)mv^2
kx^2 = mv^2
v^2 = (kx^2)/m
v = sqrt((kx^2)/m)
v = x * sqrt(k/m)
v = 0.122 * sqrt(125/0.215) <--- units converted to m and kg
v = 2.94 m/s