1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Cerrena [4.2K]
4 years ago
7

3.) A 208 g sample of sodium-24 decays to 13.0 g of sodium-24 within 60.0 hours.

Chemistry
1 answer:
Ulleksa [173]4 years ago
3 0

Answer:

Half life = 12 hrs

Explanation:

Given data:

Total amount of sample = 208 g

Amount left after 60 hr = 13.0 g

Half life = ?

Solution:

Step one:

amount             half life

208 g                    time 0

208/2                   1 half life

104/2                    2 half life

52/2                     3 half life

26/2                     4 half life

13                         5 half life

Step 2:

half life = elapsed time/ total half life when 13 g is left

Half life = 60 hrs/ 5

Half life = 12 hrs

You might be interested in
At 298 K, the osmotic pressure of a glucose solution (C6H12O6 (aq)) is 12.1 atm. Calculate the freezing point of the solution. T
Anarel [89]

<u>Answer:</u> The freezing point of solution is -0.974°C

<u>Explanation:</u>

  • To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

\pi=iMRT

where,

\pi = osmotic pressure of the solution = 12.1 atm

i = Van't hoff factor = 1 (for non-electrolytes)

M = molarity of solute = ?

R = Gas constant = 0.0821\text{ L atm }mol^{-1}K^{-1}

T = temperature of the solution = 298 K

Putting values in above equation, we get:

12.1atm=1\times M\times 0.0821\text{ L.atm }mol^{-1}K^{-1}\times 298K\\\\M=\frac{12.1}{1\times 0.0821\times 298}=0.495M

This means that 0.495 moles of glucose is present in 1 L or 1000 mL of solution

  • To calculate the mass of solution, we use the equation:

\text{Density of substance}=\frac{\text{Mass of substance}}{\text{Volume of substance}}

Density of solution = 1.034 g/mL

Volume of solution = 1000 mL

Putting values in above equation, we get:

1.034g/mL=\frac{\text{Mass of solution}}{1000mL}\\\\\text{Mass of solution}=(1.034g/mL\times 1000mL)=1034g

  • To calculate the number of moles, we use the equation:

\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}

Moles of glucose = 0.495 moles

Molar mass of glucose = 180.16 g/mol

Putting values in above equation, we get:

0.495mol=\frac{\text{Mass of glucose}}{180.16g/mol}\\\\\text{Mass of glucose}=(0.495mol\times 180.16g/mol)=89.18g

Depression in freezing point is defined as the difference in the freezing point of pure solution and freezing point of solution.

  • The equation used to calculate depression in freezing point follows:

\Delta T_f=\text{Freezing point of pure solution}-\text{Freezing point of solution}

To calculate the depression in freezing point, we use the equation:

\Delta T_f=iK_fm

Or,

\text{Freezing point of pure solution}-\text{Freezing point of solution}=i\times K_f\times \frac{m_{solute}\times 1000}{M_{solute}\times W_{solvent}\text{ (in grams)}}

where,

Freezing point of pure solution = 0°C

i = Vant hoff factor = 1 (For non-electrolytes)

K_f = molal freezing point elevation constant = 1.86°C/m

m_{solute} = Given mass of solute (glucose) = 89.18 g

M_{solute} = Molar mass of solute (glucose) = 180.16  g/mol

W_{solvent} = Mass of solvent (water) = [1034 - 89.18] g = 944.82 g

Putting values in above equation, we get:

0-\text{Freezing point of solution}=1\times 1.86^oC/m\times \frac{89.18\times 1000}{180.16g/mol\times 944.82}\\\\\text{Freezing point of solution}=-0.974^oC

Hence, the freezing point of solution is -0.974°C

8 0
3 years ago
Jane described two substances which participate in photosynthesis.
IceJOKER [234]
A gaseous product is formed
7 0
3 years ago
Read 2 more answers
The heat of vaporization of a liquid is 84.0 J/g. How many joules of heat would it take to completely vaporize 172 g of this liq
Aliun [14]

Answer:

14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.

Explanation:

The heat Q that is necessary to provide for a mass m of a certain substance to change phase is equal to Q = m*L, where L is called the latent heat of the substance and depends on the type of phase change.

During the evaporation process, a substance goes from a liquid to a gaseous state and needs to absorb a certain amount of heat from its immediate surroundings, which results in its cooling. The heat absorbed is called the heat of vaporization.

So, it is called "heat of vaporization", the energy required to change 1 gram of substance from a liquid state to a gaseous state at the boiling point.

In this case, being:

  • Q=?
  • m= 172 g
  • L= 84 \frac{J}{g}

and replacing in the expression Q = m*L you get:

Q=172 g*84 \frac{J}{g}

Q=14,448 J

<u><em>14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.</em></u>

5 0
3 years ago
Given that a for HBrO is 2. 8×10^−9 at 25°C. What is the value of b for BrO− at 25°C?
lara [203]

If Ka for HBrO is 2. 8×10^−9 at 25°C, then the value of Kb for BrO− at 25°C is 3.5× 10^(-6).

<h3>What is base dissociation constant? </h3>

The base dissociation constant (Kb) is defined as the measurement of the ions which base can dissociate or dissolve in the aqueous solution. The greater the value of base dissociation constant greater will be its basicity an strength.

The dissociation reaction of hydrogen cyanide can be given as

HCN --- (H+) + (CN-)

Given,

The value of Ka for HCN is 2.8× 10^(-9)

The correlation between base dissociation constant and acid dissociation constant is

Kw = Ka × Kb

Kw = 10^(-14)

Substituting values of Ka and Kw,

Kb = 10^(-14) /{2.8×10^(-9) }

= 3.5× 10^(-6)

Thus, we find that if Ka for HBrO is 2. 8×10^−9 at 25°C, then the value of Kb for BrO− at 25°C is 3.5× 10^(-6).

DISCLAIMER: The above question have mistake. The correct question is given as

Question:

Given that Ka for HBrO is 2. 8×10^−9 at 25°C. What is the value of Kb for BrO− at 25°C?

learn more about base dissociation constant:

brainly.com/question/9234362

#SPJ4

7 0
2 years ago
Which compound is classified as a hydrocarbon? A) butanal B) butyne C) 2-butanol D) 2-butanone
fenix001 [56]

Answer:

butyne

Explanation:

alkane, alkene, and alkyne are all examples of hydrocarbons.

butyne = alkyne

7 0
3 years ago
Other questions:
  • how many moles of CO2 form when 58.0 g of butane, C4H10, burn in oxygen? 2C4H10+13O2---&gt;8CO2+10H2O
    9·2 answers
  • A powder contains FeSO4⋅7H2O (molar mass=278.01 g/mol), among other components. A 3.930 g sample of the powder was dissolved in
    13·1 answer
  • Simularities between nonmetals and metalloids?
    9·1 answer
  • Match the following words with their definitions.
    12·1 answer
  • Why is it important to learn about fuels and gases?
    14·1 answer
  • If one parent is TT (tall), and the other parent is tt (short). What percentage of the offspring will be short
    15·1 answer
  • Why is very important to wait until the crucible is fully coleed to room temperature before weighting
    14·1 answer
  • HELP PLEASE
    7·1 answer
  • What is the current theory about the formation of the solar system?
    10·1 answer
  • 18.74 g of P4 is reacted with 9.6 g of Cl2 balanced is P4 (s) + 6 Cl2 (g) → 4 PCl3 (l) how many PlC3 can I make?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!