The answers is A and C hope this helps :)
Answer:
F = 351×10³lb
Explanation:
Given the density
ρg = 64.6lb/ft³
Diameter d = 12ft
The tank is horizontally cylindrical. The vertical distance from the top to the bottom of the tank is h = 12ft
The pressure in the tank is
P = ρgh = 64.6 × 12 = 775.2lb/ft²
The force exerted on one end of the tank is therefore F = PA = 775.2 × πd² = 775.2π×12²
F = 351×10³lb.
Well you’d have a force due to gravity, the normal force which will be perpendicular to the sources (meaning you’ll have components to this vector), and you’d have the force of friction opposing the motion of the box. I’m also assuming there’s no air resistance. In this case you’d have three vector forces.
fraction equation is<span>
F =µR
F=friction,µ=coefficient , R=reaction = mg
use same equation for b part, but the reaction is no longer mg because the plain is now inclined. Draw a forces diagram and you will see that the reaction force can be calculated from the weight of the object and inclination of the plain using trigonometry.</span>