Answer:
101.54m/h
Explanation:
Given that the buses are 5mi apart, and that they are both driving at the same speed of 55m/h, rate of change of distance can be determined using differentiation as;
Let l be the be the distance further away at which they will meet from the current points;
#The speed toward each other.

Hence, the rate at which the distance between the buses is changing when they are 13mi apart is 101.54m/h
Answer: The potential difference between the plates = 0.4061V
Explanation:
Given that the
Electric field strength E = 155 N/C
Distance d = 0.00262 m
From the definition of electric field strength, is the ratio of potential difference V to the distance between the plates. That is
E = V/d
Substitute E and d into the above formula
155 = V/0.00262
Cross multiply
V = 155 × 0.00262
V = 0.4061 V
The potential difference between the plates is 0.4061 V
Work is (force) times (distance). For Amy, you know both of them, and you can easily multiply them to find the amount of work. For Joe, the distance is zero, which should tell you all you need to know.
Answer:
i) 0.9504
ii) 0.0452
Explanation:
Given data: reliability of hydraulic brakes= 0.96
reliability of mechanical brakes = 0.99
So the probability of stopping the truck = 0.96×0.99= 0.9504
At low speed
case: A works and B does not
= 0.96×(1-0.99) = 0.0096
case2 : B works and A does not
= 0.99×(1-0.96) = 0.0396
Therefore, probality of stopping = 0.0096+0.0396 = 0.0492
Answer:
m1/m2 = 0.51
Explanation:
First to all, let's gather the data. We know that both rods, have the same length. Now, the expression to use here is the following:
V = √F/u
This is the equation that describes the relation between speed of a pulse and a force exerted on it.
the value of "u" is:
u = m/L
Where m is the mass of the rod, and L the length.
Now, for the rod 1:
V1 = √F/u1 (1)
rod 2:
V2 = √F/u2 (2)
Now, let's express V1 in function of V2, because we know that V1 is 1.4 times the speed of rod 2, so, V1 = 1.4V2. Replacing in the equation (1) we have:
1.4V2 = √F/u1 (3)
Replacing (2) in (3):
1.4(√F/u2) = √F/u1 (4)
Now, let's solve the equation 4:
[1.4(√F/u2)]² = F/u1
1.96(F/u2) =F/u1
1.96F = F*u2/u1
1.96 = u2/u1 (5)
Now, replacing the expression of u into (5) we have the following:
1.96 = m2/L / m1/L
1.96 = m2/m1 (6)
But we need m1/m2 so:
1.96m1 = m2
m1/m2 = 1/1.96
m1/m2 = 0.51