1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ray Of Light [21]
3 years ago
8

Do you know who Candice is

Engineering
2 answers:
8_murik_8 [283]3 years ago
6 0

Answer: Can these nuts fit in your mouth?

Explanation:

sp2606 [1]3 years ago
3 0

im just here for the points >:)

You might be interested in
Calculate the electroosmotic velocity of an aqueous solution through a glass capillary 5 cm long with a 0.5 mm internal diameter
natita [175]

Answer:

Electroosmotic velocity will be equal to 1.6\times 10^{-4}m/sec

Explanation:

We have given applied voltage v = 100 volt

Length of capillary L = 5 mm = 0.005 m

Zeta potential of the capillary surface \xi =80mV=0.08volt

Dielectric constant of glass is between 5 to 10 here we are taking dielectric constant as \epsilon =10

Viscosity of glass is \eta =10^8

Electroosmotic velocity is given as v_{eo}=\frac{\epsilon \xi }{\eta }\times \frac{v}{L}

v_{eo}=\frac{10\times 0.08 }{10^8 }\times \frac{100}{0.005}=1.6\times 10^{-4}m/sec

So Electroosmotic velocity will be equal to 1.6\times 10^{-4}m/sec

8 0
3 years ago
How to get on your screen on 2k20 in every mode
VashaNatasha [74]
D pad or rb or lb hop this helps
5 0
3 years ago
Read 2 more answers
Ayo, how do I change my username on here?
nydimaria [60]

Answer:

I'm not sure

Explanation:

eeeeeeeeeeeeeeeeeeeeeee

4 0
3 years ago
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
3 years ago
what is an example of an innovative solution to an engineering problem? Explain briefly why you chose this answer.
Leviafan [203]

Answer:

robotic technology    

Explanation:

Innovation is nothing but the use of various things such as ideas, products, people to build up a solution for the benefit of the human. It can be any product or any solution which is new and can solve people's problems.

Innovation solution makes use of technology to provide and dispatch new solutions or services which is a combination of both technology and ideas.

One such example of an innovative solution we can see is the use of "Robots" in medical science or in any military operations or rescue operation.

Sometimes it is difficult for humans to do everything or go to everywhere. Thus scientist and engineers have developed many advance robots or machines using new ideas and technology to find solutions to these problems.

Using innovations and technologies, one can find solutions to many problems which is difficult for the peoples. Robots can be used in any surveillance operation or in places of radioactive surrounding where there is a danger of humans to get exposed to such threats. They are also used in medical sciences to operate and support the patient.  

3 0
3 years ago
Other questions:
  • Thermosetting polymers are polymers that becomes soft and pliable when heated. ( True , False )
    8·2 answers
  • A pump is used to deliver water from a lake to an elevated storage tank. The pipe network consists of 1,800 ft (equivalent lengt
    10·1 answer
  • The shaft is hollow from A to B and solid from B to C. The shaft has an outer diameter of 79 mm, and the thickness of the wall o
    6·1 answer
  • Why Your first project as the new web designer at Smart Design is to increase web traffic to help boost web orders. Before you b
    6·1 answer
  • A cylindrical specimen of a metal alloy 45.8 mm long and 9.72 mm in diameter is stressed in tension. A true stress of 378 MPa ca
    11·1 answer
  • A local surf report provides the height of the wave from the trough to the crest of the wave. How does this relate to the wave’s
    11·1 answer
  • 1) A cylinder has a volume of 20 cubic feet. What is that volume in cubic inches? (1 ft = 12 in) ​
    8·1 answer
  • Which of the following describes a tropical grassland environment?
    6·2 answers
  • 19. A circuit contains four 100 S2 resistors connected in series. If you test the circuit with a digital VOM,
    9·1 answer
  • A company intends to market a new product and it estimates that there is a 20% chance that it will be first in the market
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!