Answer:
vB = - 0.176 m/s (↓-)
Explanation:
Given
(AB) = 0.75 m
(AB)' = 0.2 m/s
vA = 0.6 m/s
θ = 35°
vB = ?
We use the formulas
Sin θ = Sin 35° = (OA)/(AB) ⇒ (OA) = Sin 35°*(AB)
⇒ (OA) = Sin 35°*(0.75 m) = 0.43 m
Cos θ = Cos 35° = (OB)/(AB) ⇒ (OB) = Cos 35°*(AB)
⇒ (OB) = Cos 35°*(0.75 m) = 0.614 m
We apply Pythagoras' theorem as follows
(AB)² = (OA)² + (OB)²
We derive the equation
2*(AB)*(AB)' = 2*(OA)*vA + 2*(OB)*vB
⇒ (AB)*(AB)' = (OA)*vA + (OB)*vB
⇒ vB = ((AB)*(AB)' - (OA)*vA) / (OB)
then we have
⇒ vB = ((0.75 m)*(0.2 m/s) - (0.43 m)*(0.6 m/s) / (0.614 m)
⇒ vB = - 0.176 m/s (↓-)
The pic can show the question.
Answer:
The surface area of the primary settling tank is 0.0095 m^2.
The effective theoretical detention time is 0.05 s.
Explanation:
The surface area of the tank is calculated by dividing the volumetric flow rate by the overflow rate.
Volumetric flow rate = 0.570 m^3/s
Overflow rate = 60 m/s
Surface area = 0.570 m^3/s ÷ 60 m/s = 0.0095 m^2
Detention time is calculated by dividing the volume of the tank by the its volumetric flow rate
Volume of the tank = surface area × depth = 0.0095 m^2 × 3 m = 0.0285 m^3
Detention time = 0.0285 m^3 ÷ 0.570 m^3/s = 0.05 s
Answer: heat loss through wall is 16.58034kW
Temperature of inside wall surface is 47°c
Temperature of outside wall surface is -2.7°c
Explanation:detailed calculation and explanation is shown in the image below.
Answer:
0.1 nm
Explanation
Potential deference of the electron is given as V =150 V
Mass of electron 
Let the velocity of electron = v
Charge on the electron 
plank's constant h =
According to energy conservation 

Now we know that De Broglie wavelength 