Answer:
The correct option is;
c. the exergy of the tank can be anything between zero to P₀·V
Explanation:
The given parameters are;
The volume of the tank = V
The pressure in the tank = 0 Pascal
The pressure of the surrounding = P₀
The temperature of the surrounding = T₀
Exergy is a measure of the amount of a given energy which a system posses that is extractable to provide useful work. It is possible work that brings about equilibrium. It is the potential the system has to bring about change
The exergy balance equation is given as follows;
![X_2 - X_1 = \int\limits^2_1 {} \, \delta Q \left (1 - \dfrac{T_0}{T} \right ) - [W - P_0 \cdot (V_2 - V_1)]- X_{destroyed}](https://tex.z-dn.net/?f=X_2%20-%20X_1%20%3D%20%5Cint%5Climits%5E2_1%20%7B%7D%20%5C%2C%20%5Cdelta%20Q%20%5Cleft%20%281%20-%20%5Cdfrac%7BT_0%7D%7BT%7D%20%5Cright%20%29%20-%20%5BW%20-%20P_0%20%5Ccdot%20%28V_2%20-%20V_1%29%5D-%20X_%7Bdestroyed%7D)
Where;
X₂ - X₁ is the difference between the two exergies
Therefore, the exergy of the system with regards to the environment is the work received from the environment which at is equal to done on the system by the surrounding which by equilibrium for an empty tank with 0 pressure is equal to the product of the pressure of the surrounding and the volume of the empty tank or P₀ × V less the work, exergy destroyed, while taking into consideration the change in heat of the system
Therefore, the exergy of the tank can be anything between zero to P₀·V.
Explanation:
Temperature range → 0 to 80'c
respective voltage output → 0.2v to 0.5v
required temperature range 20'c to 40'c
Where T = 20'c respective voltage


Therefore, Sensor output changes from 0.275v to 0.35volts for the ADC the required i/p should cover the dynamic range of ADC (ie - 0v to 3v)
so we have to design a circuit which transfers input voltage 0.275volts - 0.35v to 0 - 3v
Therefore, the formula for the circuit will be

The simplest circuit will be a op-amp
NOTE: Refer the figure attached
Vs is sensor output
Vr is the reference volt, Vr = 0.275v

choose R2, R1 such that it will maintain required ratio
The output Vo can be connected to voltage buffer if you required better isolation.
Answer:
try to pop it back in good luck im scared for you
Answer:
Distillation, heat
Explanation:
Here in this question, we simply want to look at the best options that could fit in the gaps.
We have a mixture of liquids having boiling points which is far from each other.
Whenever we have a mixture of liquids with boiling points far away from each other, the best technique to use in separating them is to use distillation. That is why we have that as the best fit for the first missing gap.
Now, to get the liquids to separate from each other, we shall be needing the heating mantle for the application of heat. This ensures that the mixture is vaporized. After vaporization, the condensing tube will help to condense the vapor of each of the liquids once we reach the boiling point of either of the two.
Kindly note that the liquid with the lower temperature will evaporate first and will be first obtained. In fact after reaching a little above the boiling point of the lower boiling liquid, we can be sure that what we have left in the mixture pot is the second other liquid with the higher boiling point.
Answer:
The result might require 9 bits to store