1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
artcher [175]
3 years ago
5

A cylindrical bar of metal having a diameter of 20.2 mm and a length of 209 mm is deformed elastically in tension with a force o

f 50500 N. Given that the elastic modulus and Poisson's ratio of the metal are 65.5 GPa and 0.33, respectively, determine the following: (a) The amount by which this specimen will elongate in the direction of the applied stress. (b) The change in diameter of the specimen. Indicate an increase in diameter with a positive number and a decrease with a negative number.
Engineering
1 answer:
Rus_ich [418]3 years ago
8 0

Answer:

A) ΔL = 0.503 mm

B) Δd = -0.016 mm

Explanation:

A) From Hooke's law; σ = Eε

Where,

σ is stress

ε is strain

E is elastic modulus

Now, σ is simply Force/Area

So, with the initial area; σ = F/A_o

A_o = (π(d_o)²)/4

σ = 4F/(π(d_o)²)

Strain is simply; change in length/original length

So for initial length, ε = ΔL/L_o

So, combining the formulas for stress and strain into Hooke's law, we now have;

4F/(π(d_o)²) = E(ΔL/L_o)

Making ΔL the subject, we now have;

ΔL = (4F•L_o)/(E•π(d_o)²)

We are given;

F = 50500 N

L_o = 209mm = 0.209m

E = 65.5 GPa = 65.5 × 10^(9) N/m²

d_o = 20.2 mm = 0.0202 m

Plugging in these values, we have;

ΔL = (4 × 50500 × 0.209)/(65.5 × 10^(9) × π × (0.0202)²)

ΔL = 0.503 × 10^(-3) m = 0.503 mm

B) The formula for Poisson's ratio is;

v = -(ε_x/ε_z)

Where; ε_x is transverse strain and ε_z is longitudinal strain.

So,

ε_x = Δd/d_o

ε_z = ΔL/L_o

Thus;

v = - [(Δd/d_o)/(ΔL/L_o)]

v = - [(Δd•L_o)/(ΔL•d_o)]

Making Δd the subject, we have;

Δd = -[(v•ΔL•d_o)/L_o]

We are given v = 0.33; d_o = 20.2mm

So,

Δd = -[(0.33 × 0.503 × 20.2)/209]

Δd = -0.016 mm

You might be interested in
A heat engine is coupled with a dynamometer. The length of the load arm is 900 mm. The spring balance reading is 16. Applied wei
miss Akunina [59]

Answer:

P = 80.922 KW

Explanation:

Given data;

Length of load arm is 900 mm = 0.9 m

Spring balanced  read 16 N

Applied weight is 500 N

Rotational speed is 1774 rpm

we know that power is given as

P = T\times \omega

T Torque = (w -s) L = (500 - 16)0.9 = 435.6 Nm

\omega angular speed =\frac{2 \pi N}{60}

Therefore Power is

P =\frac{435.6 \time 2 \pi \times 1774}{60} = 80922.65  watt

P = 80.922 KW

4 0
3 years ago
In RSA Digital Signature, Suppose Bob wants to send a signed message (x = 4) to Alice. The first steps are exactly t eps are exa
Luda [366]

Answer:

what r u on

Explanation:

4 0
3 years ago
Explain 3 ways that people in sports use engineering to increase their performance?
LenKa [72]
Designing systems for manufacturing, motion analysis or impact testing;
building and testing prototypes;
analyzing the human body to prevent injury;
developing or designing new light weight materials that will be more comfortable and withstand greater impacts or forces;
7 0
3 years ago
Sinks must be used for the correct intended purpose to prevent
irakobra [83]

Answer:

... spilling water or getting anything cascading onto the floor

8 0
3 years ago
A cylinder fitted with a frictionless piston contains 2 kg of R-134a at 3.5 bar and 100 C. The cylinder is now cooled so that th
inna [77]

Answer:

The answer to the question is

The heat transferred in the process is -274.645 kJ

Explanation:

To solve the question, we list out the variables thus

R-134a = Tetrafluoroethane

Intitial Temperaturte t₁ = 100 °C

Initial pressure = 3.5 bar = 350 kPa

For closed system we have m₁ = m₂ = m

ΔU = m×(u₂ - u₁) = ₁Q₂ -₁W₂

For constant pressure process we have

Work done = W = \int\limits^a_b P \, dV  = P×ΔV = P × (V₂ - V₁) = P×m×(v₂ - v₁)

From the tables we have

State 1 we have h₁ = (490.48 +489.52)/2 = 490 kJ/kg

State 2 gives h₂ = 206.75 + 0.75 × 194.57= 352.6775 kJ/kg

Therefore Q₁₂ = m×(u₂ - u₁) + W₁₂ = m × (u₂ - u₁) + P×m×(v₂ - v₁)

= m×(h₂ - h₁) = 2.0 kg × (352.6775 kJ/kg - 490 kJ/kg) =-274.645 kJ

5 0
3 years ago
Other questions:
  • An air-standard Otto cycle has a compression ratio of 6 and the temperature and pressure at the beginning of the compression pro
    13·1 answer
  • The Emergency Stop Button icon on the Inputs toolbar can be used to press or release the Emergency Stop button on the CNC machin
    10·1 answer
  • Imagine you work for the public housing agency of a city, and you have been charged with keeping track of who is living in the a
    15·1 answer
  • The market for college textbooks is illustrated in the graph below. In the market for textbooks, the current price of a textbook
    11·1 answer
  • List the three main methods employed in dimensional analysis
    6·1 answer
  • Water discharging into a 10-m-wide rectangular horizontal channel from a sluice gate is observed to have undergone a hydraulic j
    12·1 answer
  • (a) Sabbir usually (sit)______ in the front bench.
    13·1 answer
  • Please answwr the above question screenshot.​
    15·1 answer
  • GOOD AFTERNOON GUYSS!! ​
    15·2 answers
  • Select the correct answer. Which of the following devices is a simple machine? A.
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!