D (Glucose +Oxygen --> Carbon Dioxide + Water + Energy)
The whole point of this problem is to check how well you understand
the definitions of a few important quantities, like velocity, speed, distance,
displacement etc.
Before we begin, I just want to mention that 'MPG' is not a unit of either
velocity or speed, but I think I know what you mean.
-- For some reason, Ms. Eaddy rode 100 miles north on the train, then
stayed aboard while the train turned around and took her 150 miles south.
The total distance she rode was (100 + 150) = 250 miles. But she ended up
50 miles south of where she began.
-- Displacement for the whole trip = distance and direction from the start point
to the finish point.
Displacement = 50 miles south
-- Average velocity = (displacement) / (time)
50 miles south / 3.5 hours = <u>14.29 miles per hour south</u>
Answer:
A) At point 1, local acceleration = 0.5 m/s²
At point 2, local acceleration = 1.0 m/s²
B) Average Eulerian convective acceleration over the two points in the cross section shown = 0.5 m/s²
This value is positive indicating an increase in velocity and acceleration kf the fluid as the cross sectional Area of flow reduces.
Explanation:
Local acceleration at those points is the instantaneous acceleration at those points and it is given as
a = dv/dt
At point 1, v₁ = 0.5 t
a₁ =dv₁/dt = 0.5 m/s²
At point 2, v₂ = 1.0 t
a₂ = dv₂/dt = 1.0 m/s²
b) Average Eulerian convective acceleration over the two points in the cross section shown = (change of velocity between the two points)/time
Change of velocity between the two points = v₂ - v₁ = 1.0t - 0.5t = 0.5 t
Time = t
Average acceleration = 0.5t/t = 0.5 m/s²
This value is positive indicating an increase in velocity and acceleration kf the fluid as the cross sectional Area of flow reduces.
Answer:
B: Energy that is transformed is neither created or destroyed
Explanation:
The properties that change how we perceive light waves are the following:
The amplitude of the light wave changes the brightness of light relative to other light waves of the same wavelenghth.
The frequency of the light wave changes the color and the type of the light wave.