<h3>
Answer:</h3>
0.144 moles
<h3>
Explanation:</h3>
- The relationship between mass of a compound, number of moles and molar mass of the compound is given by;
- Number of moles = Mass ÷ Molar mass
- Molar mass is equivalent to the relative formula mass of the compound that is calculated the atomic masses of the elements making the compound.
In this case;
Our compound, KClO3 will have a molar mass of;
= 39 + 35.5 + 4(16)
= 138.5 g/mol
Mass of KClO3 is 20 g
Therefore;
Number of moles = 20 g ÷ 138.5 g/mol
= 0.144 moles
Thus, the number of moles in 20 g of KClO3 is 0.144 moles
C6H5 is the molecular formula for Phenyl.
When you heat up most substances it gives them more Kinetic energy and the substance becomes less arranged in an ordered state, further apart and move faster. therefore the answer is the first: They gain a higher average kinetic energy
Hope that helps :)
<span>What is the electron configuration of aluminum is </span>1s^2 2s^2 2p^6 3s^2 3p^1.
Volume of the tank is 5.5 litres.
Explanation:
mass of the CO2 is given 8.6 grams
Pressure of the gas is 89 Kilopascal which is 0.8762 atm
Temperature of the gas is 29 degrees ( 0 degrees +273.5= K) so (29+273)
R = gas constant 0.0821 liter atmosphere per kelvin)
FROM THE IDEAL GAS LAW
PV=nRT ( P Pressure, V Volume, n is number of moles of gas, R gas constant, Temperature in Kelvin)
no of moles = mass/atomic mass
= 8.6/44
= 0.195 moles
now putting the values in equation
V=nRT/P
= 0.195*0.0821*302/ 0.8762
= 5.5 litres.
As the carbon dioxide gas occupies the volume os the tank hence volume of tank is 5.5 litres.