It results change only in it's kinetic energy, it's KE will increase in accord with the work-energy theorem
Answer:
<h2>135,000 J</h2>
Explanation:
The work done by an object can be found by using the formula
workdone = force × distance
From the question we have
workdone = 900 × 150
We have the final answer as
<h3>135,000 J</h3>
Hope this helps you
Answer: Go to the harbor. When a ship sails off toward the horizon, it doesn't just get smaller and smaller until it's not visible anymore. Instead, the hull seems to sink below the horizon first, then the mast. When ships return from sea, the sequence is reversed: First the mast, then the hull, seem to rise over the horizon.
Climbing to a high point will allow you to be able to see farther if you go higher. If the Earth was flat, you'd be able to see the same distance no matter your elevation
Answer:
Distance = 13.9 meters
Explanation:
Given the following data;
Maximum speed = 150 km/hr to meters per seconds = 150 * 1000/3600 = 41.67 m/s
Decelerating speed = 3m/s
To find the distance travelled with this speed;
Distance = maximum speed/decelerating speed
Distance = 41.67/3
Distance = 13.9 meters
Therefore, the bus would travel a distance of 13.9 meters before stopping.