Answer:
(d) not enough info
Explanation:
because it doesn't specify where the strings are attached
if it was the two ends of the rod then T1 would be equal to T2
Answer:
42m/s
6.06s
Explanation:
To find the initial velocity and time in which the ball is fling over the ground you use the following formulas:

θ: angle = 45°
vo: initial velocity
g: gravitational constant = 9.8m/s^2
x_max: max distance = 180 m
t_max: max time
by replacing the values of the parameters and do vo the subject of the first formula you obtain:

with this value of vo you calculate the max time:

hence, the initial velocity of the ball is 42m/s and the time in which the ball is in the air is 6.06s
- - - - - - - - - - - - -- - - - - - - - - - - - - -
TRANSLATION:
Para encontrar la velocidad inicial y el tiempo en el que la pelota está volando sobre el suelo, use las siguientes fórmulas:
θ: ángulo = 45 °
vo: velocidad inicial
g: constante gravitacional = 9.8m / s ^ 2
x_max: distancia máxima = 180 m
t_max: tiempo máximo
reemplazando los valores de los parámetros y haciendo el tema de la primera fórmula que obtiene:
con este valor de vo usted calcula el tiempo máximo:
por lo tanto, la velocidad inicial de la pelota es de 42 m / sy el tiempo en que la pelota está en el aire es de 6.06 s
Answer:
The time it takes for 14C to radioactively decay is described by its half-life. C has a half-life of 5,730 years. In other words, after 5,730 years, only half of the original amount of 14C remains in a sample of organic material. After an additional 5,730 years–or 11,460 years total–only a quarter of the 14C remains.
Explanation:
Hope this helps
This equation is one of the most useful in classical physics. It is a concise statement of Isaac Newton's<span> Second Law of Motion, holding both the proportions and vectors of the Second Law. It translates as: The net force on an object is </span>equal<span> to the </span>mass<span>of the object multiplied by the </span>acceleration<span> of the object.</span>
Answer:

Explanation:
The problem tell us that the temperature as function of time in downtown mathville is given by:

The average temperature over a given interval can be calculated as:

Where:

So, the initial temperature in this case, would be the temperature at noon, and the final temperature would be the temperature at midnight:
Therefore:


Hence, the average temperature between noon and midnight is:
