I can’t understand I’m sorry but if you need help with math I can help you
Answer:
A) 350 N
B) 58.33 N
C) 35 kg
D) 35 kg
Explanation:
If we use that g = 10 m/s^2, then the acceleration of gravity on the Moon will be 10/6 m/s^2 = 5/3 m/s*2
The weight of the object on Earth is given by:
Weight = mass * g = 35 * 10 = 350 N
The weight of the object on the Moon:
Weight = mass * gmoon = 35 * 5/3 = 58.33 N
The mass of the object on Earth is 35 kg
The mass of the object on the Moon is exactly the same as on the Earth (35 kg) since the mass is a quantity inherent to the object and not to its location.
Answer:
(a) 1.257 x 10^5 J
(b) 1.456 Watt
Explanation:
Volume of blood, v = 7500 L = 7.5 m^3
Height, h = 1.63 m
density of blood, d = 1.05 x 10^3 kg/m^3
(a) work done = m x g x h
W = v x d x g x h = 7.5 x 1.05 x 1000 x 9.8 x 1.63 = 1.257 x 10^5 J
(b) time = 1 day = 24 x 60 x 60 s = 86400 seconds
Power = Work / time = 1.257 x 10^5 / 86400 = 1.456 Watt
Because the tip of the moon's shadow ... the area of "totality" ... is never more than a couple hundred miles across, It never covers a single place for more than 7 minutes, and can never stay on the Earth's surface for more than a few hours altogether during one eclipse.
If you're not inside that small area, you don't see a total eclipse.
Answer: The period of the pendulum will increase. Because of less gravity
Explanation:
Since the force of gravity is less on the Moon, the pendulum would swing slower at the same length and angle and its frequency would be less. Hence more time period will be experienced by the pendulum. On the moon, the acceleration due to gravity g is less when compared to that of the earth.