Take the tiny bit of carbon dioxide and the tiny bit of water vapor out of the air,
and the rest of what you're breathing right now is a mixture of elements.
First,

where
is density,
is mass, and
is volume. We can compute the volume of the roll:


When the roll is unfurled, the aluminum will be a rectangular box (a very thin one), so its volume will be the product of the given area and its thickness
. Note that we're assuming the given area is not the actual total surface area of the aluminum box, but just the area of the largest face (i.e. the area of one side of the unrolled sheet of aluminum).
So we have

where
is the given area, so


If we're taking significant digits into account, the volume we found would have been
, in turn making the thickness
.
the answer is 0.284 lb/in3
Answer:
book speed is 3.99 m/s
Explanation:
given data
mass m = 490 g = 0.490 kg
compressing x = 7.10 cm = 0.0710 m
spring constant k = 1550 N/m
to find out
book speed
solution
we know energy is conserve so
we can say
loss in spring energy is equal to gain in kinetic energy
so
..................1
put here value
v = 3.99 m/s
so book speed is 3.99 m/s
Answer:
fb = 240.35 Hz
Explanation:
In order to calculate the beat frequency generated by the first modes of each, organ and tube, you use the following formulas for the fundamental frequencies.
Open tube:
(1)
vs: speed of sound = 343m/s
L: length of the open tube = 0.47328m
You replace in the equation (1):
Closed tube:

L': length of the closed tube = 0.702821m

Next, you use the following formula for the beat frequency:

The beat frequency generated by the first overtone pf the closed pipe and the fundamental of the open pipe is 240.35Hz