Juancastillorc your answer to your problem is 37.
Answer:
Moles of TNT = 2.38 moles
Explanation:
First , calculate the molar mass of the compound TNT
The formula is : C7H5N3O6
How to calculate molar mass?
Molar mass : It is the mass of substance in grams which is present in 1 mole of the compound.It is calculated by:
Molar mass = Number of atoms x the atomic mass of the element
Atomic mass of the elements are given below :
C = 12.0107
H = 1.0079
N = 14.0067
O = 15.9994
Molar mass of C7H5N3O6 =
= (7 x C) + (5 x H) + (3 x N) + (6 x O)
= 7(12.0107) +5(1.0079) + 3(14.0067) + 6(15.9994)
Molar mass = 227 .13 gram/mole
Mole are calculated using the formula:

Given mass = 539.88 grams
Molar mass = 227.13 g/mole

= 2.3769
Moles = 2.38 moles
Answer:
it will be classical as gas
Answer:
Option (E) is correct
Explanation:
Solubility equilibrium of
is given as follows-

Hence, if solubility of
is S (M) then-
and ![[IO_{3}^{-}]=2S(M)](https://tex.z-dn.net/?f=%5BIO_%7B3%7D%5E%7B-%7D%5D%3D2S%28M%29)
Where species under third bracket represent equilibrium concentrations
So, solubility product of
, ![K_{sp}=[Pb^{2+}][IO_{3}^{-}]^{2}](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BPb%5E%7B2%2B%7D%5D%5BIO_%7B3%7D%5E%7B-%7D%5D%5E%7B2%7D)
Here, ![[Pb^{2+}]=S(M)=5.0\times 10^{-5}M](https://tex.z-dn.net/?f=%5BPb%5E%7B2%2B%7D%5D%3DS%28M%29%3D5.0%5Ctimes%2010%5E%7B-5%7DM)
So, ![[IO_{3}^{-}]=2S(M)=(2\times 5.0\times 10^{-5})M=1.0\times 10^{-4}M](https://tex.z-dn.net/?f=%5BIO_%7B3%7D%5E%7B-%7D%5D%3D2S%28M%29%3D%282%5Ctimes%205.0%5Ctimes%2010%5E%7B-5%7D%29M%3D1.0%5Ctimes%2010%5E%7B-4%7DM)
So, 
Hence option (E) is correct
Answer:
Therefore the concentration of the reactant after 4.00 minutes will be 0.686M.
Explanation:
The unit of k is s⁻¹.
The order of the reaction = first order.
First order reaction: A first order reaction is a reaction in which the rate of reaction depends only the value of the concentration of the reactant.
![-\frac{d[A]}{dt} =kt](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%20%3Dkt)
[A] = the concentration of the reactant at time t
k= rate constant
t= time
Here k= 4.70×10⁻³ s⁻¹
t= 4.00
[A₀] = initial concentration of reactant = 0.700 M
![-\frac{d[A]}{dt} =kt](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%20%3Dkt)
![\Rightarrow -\frac{d[A]}{[A]}=kdt](https://tex.z-dn.net/?f=%5CRightarrow%20-%5Cfrac%7Bd%5BA%5D%7D%7B%5BA%5D%7D%3Dkdt)
Integrating both sides
![\Rightarrow\int -\frac{d[A]}{[A]}=\int kdt](https://tex.z-dn.net/?f=%5CRightarrow%5Cint%20-%5Cfrac%7Bd%5BA%5D%7D%7B%5BA%5D%7D%3D%5Cint%20kdt)
⇒ -ln[A] = kt +c
When t=0 , [A] =[A₀]
-ln[A₀] = k.0 + c
⇒c= -ln[A₀]
Therefore
-ln[A] = kt - ln[A₀]
Putting the value of k, [A₀] and t
- ln[A] =4.70×10⁻³×4 -ln (0.70)
⇒-ln[A]= 0.375
⇒[A] = 0.686
Therefore the concentration of the reactant after 4.00 minutes will be 0.686M.