The given above pretty much states already that with the presence of the calcium carbonate which acts as the buffer will allow the solution to withstand changes in acidity. The greater the amount, the higher chances that it will be able to withstand the said changes. Therefore, if Lake X had greater ppm of CaCO3 then, it will be able to withstand greater amount of acid rain.
Answer:
compound
Explanation:
because now there are one together
We can use the ideal gas equation:
PV = nRT
P = 202.6kPa = 202600 Pa (You have to
multiply by 1000)
n = 0.050 mole
R = 0.082 atm*l/(K*mol)
T = 400K
We will have to convert from Pa to atm or
viceversa.
101325 Pa________1 atm
202600 Pa________x = 2.00 atm
2atm*V = 0.050 mole*0.082 atm*l/(K*mol)* 400K
V = 0.050 mole*0.082 atm*l/(K*mol)* 400K/2atm
= 0.82 liters = 820 mililiters
Use PV = mRT/M and solve for R. R = PVM/RT. Since you have the same gas under two sets of conditions then you can write
<span>P1V1M1/m1T1 = P2V2M2/m2T2 </span>
<span>Since P, M and T are constant, the equation becomes </span>
<span>V1/m1 = V2/m2 </span>
<span>Now plug in your values and solve for V2</span>