We will conclude that:
- The domain of the exponential function is equal to the range of the logarithmic function.
- The domain of the logarithmic function is equal to the range of the exponential function.
<h3>
Comparing the domains and ranges.</h3>
Let's study the two functions.
The exponential function is given by:
f(x) = A*e^x
You can input any value of x in that function, so the domain is the set of all real numbers. And the value of x can't change the sign of the function, so, for example, if A is positive, the range will be:
y > 0.
For the logarithmic function we have:
g(x) = A*ln(x).
As you may know, only positive values can be used as arguments for the logarithmic function, while we know that:

So the range of the logarithmic function is the set of all real numbers.
<h3>So what we can conclude?</h3>
- The domain of the exponential function is equal to the range of the logarithmic function.
- The domain of the logarithmic function is equal to the range of the exponential function.
If you want to learn more about domains and ranges, you can read:
brainly.com/question/10197594
(-1.2,-2.0) and (1.9,2.2) are the best approximations of the solutions to this system.
Option B
<u>Step-by-step explanation:</u>
Here, we have a graph of two functions from which we need to find the approximate value of common solutions. Let's find this:
First look at where we have intersection points, In first quadrant & in third quadrant.
<u>At first quadrant:</u>
Draw perpendicular lines from x-axis & y-axis from this point . After doing this we can clearly see that the perpendicular lines cut x-axis at x=1.9 and y-axis at y=2.2. So, one point is (1.9,2.2)
<u>At Third quadrant:</u>
Draw perpendicular lines from x-axis & y-axis from this point. After doing this we can clearly see that the perpendicular lines cut x-axis at x=-1.2 and y-axis at y= -2.0. So, other point is (-1.2,-2.0).
Ok so if you want the 11th term you have to put 11 instead of n so it’s
-6*11+13=-53
Answer:
Horizontal component = 9.6
Step-by-step explanation:
Recall that the horizontal component is given by the cosine projection;

which in our case (using the fact that in each degree of angle one has 60 minutes of angle, and therefore 30 minutes of angles is the same as 0.5 degrees) becomes:

And rounding to the nearest tenth as requested, we have:

The greatest common factor is 1 because there is not a number that goes into or will multiply and get 49 and 4. 49 is an odd number and 4 is an even number so the GCF is 1.