Answer:
The frictional force acting on the block is 14.8 N.
Explanation:
Given that,
Weight of block = 37 N
Coefficients of static = 0.8
Kinetic friction = 0.4
Tension = 24 N
We need to calculate the maximum friction force
Using formula of friction force

Put the value into the formula


So, the tension must exceeds 29.6 N for the block to move
We need to calculate the frictional force acting on the block
Using formula of frictional force

Put the value in to the formula


Hence, The frictional force acting on the block is 14.8 N.
Hydrogen has one electron in its outermost shell, while fluorine has seven electron in its outermost shell, hence both hydrogen and fluorine needs a single electron to complete its outermost shell.
That's why there is a single bond between hydrogen and fluorine.
Hence both hydrogen and fluorine share one electron with each other, so option "A" is correct.
Answer:
A 30 lb weight is attached to the end of a spring. The spring is stretched 6 in. Find the equation of motion if the weight is released from rest a point 3 inches above equilibrium position 。x(,) =-2 sin(81) 32 x(t) =-32 cos(80 O x(r) =-icos(81)
Explanation:
Answer:
force (tension) of 29.4 N (upward) in 100 cm
force (tension) of 58.4 N (upward) in 200 cm
Explanation:
Given:
Length of tube = 5 m (500 cm)
Mass of tube = 9
Suspended vertically from 150 cm and 50 cm.
Computation:
Force = Mass × gravity acceleration.
Force = 9.8 x 9
Force = 88.2 N
So,
Upward forces = Downward forces
D1 = 150 - 50 = 100 cm
D2 = 150 + 50 = 200 cm
And F1 = F2
F1 x D1 = F2 x D2
F1 x 100 = F2 x 200
F = 2F
Total force = Upward forces + Downward forces
3F = 88.2
F = 29.4 and 2F = 58.8 N
force (tension) of 29.4 N (upward) in 100 cm
force (tension) of 58.4 N (upward) in 200 cm