Answer:

Explanation:
t = Time taken = 
i = Current = 3 A
q(0) = Initial charge =
Charge is given by

The magnitude of the net electric charge of the capacitor is 
<h3><u>Answer</u>;</h3>
1600 years
<h3><u>Explanation</u>;</h3>
- Half life is the time taken for a radioactive isotope to decay by half of its original amount.
- We can use the formula; N = O × (1/2)^n ; where N is the new mass, O is the original amount and n is the number of half lives.
- A sample of radium-226 takes 3200 years to decay to 1/4 of its original amount.
Therefore;
<em>1/4 = 1 × (1/2)^n</em>
<em>1/4 = (1/2)^n </em>
<em>n = 2 </em>
Thus; <em>3200 years is equivalent to 2 half lives.</em>
<em>Hence, the half life of radium-226 is 1600 years</em>
According to the description given in the photo, the attached figure represents the problem graphically for the Atwood machine.
To solve this problem we must apply the concept related to the conservation of energy theorem.
PART A ) For energy conservation the initial kinetic and potential energy will be the same as the final kinetic and potential energy, so



PART B) Replacing the values given as,




Therefore the speed of the masses would be 1.8486m/s
Answer:
Fnet = F√2
Fnet = kq²/r² √2
Explanation:
A exerts a force F on B, and C exerts an equal force F on B perpendicular to that. The net force can be found with Pythagorean theorem:
Fnet = √(F² + F²)
Fnet = F√2
The force between two charges particles is:
F = k q₁ q₂ / r²
where
k is Coulomb's constant, q₁ and q₂ are the charges, and r is the distance between the charges.
If we say the charge of each particle is q, then:
F = kq²/r²
Substituting:
Fnet = kq²/r² √2
Answer:
v' = 2.4 m/s
Explanation:
Given that,
Mass of one skater, m = 60 kg
Mass of the other's skater, m' = 60 kg
The two skaters push off each other. After the push, the smaller skater has a velocity of 3.0 m/s.
When there is no external force acting on a system, the momentum remains conserved. It means initial momentum is equal to the final momentum. Let v' is the velocity of the larger skater.
mv = m'v'

So, the velocity of the larger skater is 2.4 m/s.