1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
weqwewe [10]
2 years ago
12

What unit is used to measure the period of a wave?

Physics
1 answer:
mixer [17]2 years ago
4 0

Answer:

D. Meters/Seconds

Explanation:

The time period of a wave is measured in seconds.

A typical wave involves both time and distance.  Consider a sound wave, which is basically a periodic modulation of the local air pressure.  We "hear" the sound because our ears respond to the variations of pressure.

The most common metric of a sound wave is frequency.  This is the rate at which the change in pressure occurs, and is measured in cycles per second, formally known as "hertz".  The period is the inverse of frequency andl has the units of seconds per cycle, commonly stated simply as seconds.

You might be interested in
Find the quantity of heat needed
krok68 [10]

Answer:

Approximately 3.99\times 10^{4}\; \rm J (assuming that the melting point of ice is 0\; \rm ^\circ C.)

Explanation:

Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.

\begin{aligned}m&= 100\; \rm g \times \frac{1\; \rm kg}{1000\; \rm g} \\ &= 0.100\; \rm kg\end{aligned}

The energy required comes in three parts:

  • Energy required to raise the temperature of that 0.100\; \rm kg of ice from (-10\; \rm ^\circ C) to 0\; \rm ^\circ C (the melting point of ice.)
  • Energy required to turn 0.100\; \rm kg of ice into water while temperature stayed constant.
  • Energy required to raise the temperature of that newly-formed 0.100\; \rm kg of water from 0\; \rm ^\circ C to 10\;\ rm ^\circ C.

The following equation gives the amount of energy Q required to raise the temperature of a sample of mass m and specific heat capacity c by \Delta T:

Q = c \cdot m \cdot \Delta T,

where

  • c is the specific heat capacity of the material,
  • m is the mass of the sample, and
  • \Delta T is the change in the temperature of this sample.

For the first part of energy input, c(\text{ice}) = 2100\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (0\; \rm ^\circ C) - (-10\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_1 &= c(\text{ice}) \cdot m(\text{ice}) \cdot \Delta T\\ &= 2100\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 2.10\times 10^{3}\; \rm J\end{aligned}.

Similarly, for the third part of energy input, c(\text{water}) = 4200\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (10\; \rm ^\circ C) - (0\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_3&= c(\text{water}) \cdot m(\text{water}) \cdot \Delta T\\ &= 4200\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 4.20\times 10^{3}\; \rm J\end{aligned}.

The second part of energy input requires a different equation. The energy Q required to melt a sample of mass m and latent heat of fusion L_\text{f} is:

Q = m \cdot L_\text{f}.

Apply this equation to find the size of the second part of energy input:

\begin{aligned}Q_2&= m \cdot L_\text{f}\\&= 0.100\; \rm kg \times 3.36\times 10^{5}\; \rm J\cdot kg^{-1} \\ &= 3.36\times 10^{4}\; \rm J\end{aligned}.

Find the sum of these three parts of energy:

\begin{aligned}Q &= Q_1 + Q_2 + Q_3 = 3.99\times 10^{4}\; \rm J\end{aligned}.

3 0
3 years ago
Which of the following processes most directly helps create soil from rocks?
irina [24]
A. Weathering I think
4 0
3 years ago
Read 2 more answers
Find the density of seawater at a depth where the pressure is 500 atm if the density at the surface is 1100 kg/m^3 . Seawater ha
mixer [17]

The density of seawater at a depth where the pressure is 500 atm is 1124kg/m^3

Explanation:

The relationship between bulk modulus and pressure is the following:

B=\rho_0 \frac{\Delta p}{\Delta \rho}

where

B is the bulk modulus

\rho_0 is the density at surface

\Delta p is the variation of pressure

\Delta \rho is the variation of density

In this problem, we have:

B=2.3\cdot 10^9 N/m^2 is the bulk modulus

\rho_0 =1100 kg/m^3

\Delta p = p-p_0 = 500 atm - 1 atm = 499 atm = 5.05\cdot 10^7 Pa is the change in pressure with respect to the surface (the pressure at the surface is 1 atm)

Therefore, we can find the density of the water where the pressure is 500 atm as follows:

\rho = \rho_0 + \Delta \rho = \rho_0+\frac{\rho_0 \Delta p}{B}=\rho_0 (1+\frac{\Delta p}{B})=(1100)(1+\frac{5.05\cdot 10^7}{2.3\cdot 10^9})=1124kg/m^3

Learn more about pressure in a fluid:

brainly.com/question/9805263

#LearnwithBrainly

7 0
3 years ago
The product side of a chemical reaction is shown. → 7Ti2(SO4)3
Alex_Xolod [135]
The answer is the fourth choice because there are 7 represents in a coefficient.

7 0
3 years ago
Read 2 more answers
Before a star is born, the matter that will become the star exists as a
vazorg [7]

Answer:

The answer is D

Explanation:

I'm too lz to explain everything.

sorry.

6 0
3 years ago
Read 2 more answers
Other questions:
  • Mike's car, which weighs 1,000 kg, is out of gas. Mike is trying to push the car to a gas station, and he makes the car go 0.05
    12·1 answer
  • Suppose 500 joules of work is done to push an object in 15 seconds. Find the power for this situation
    12·1 answer
  • A concave lens is used to form an image. The diagram shows three incident rays that pass the object and then reach the lens. How
    13·2 answers
  • In diving to a depth of 248 m, an elephant seal also moves 296 m due east of his starting point. What is the magnitude of the se
    7·1 answer
  • You need to repair a gate on the farm. The gate weighs 100 kg and pivots as indicated. A small diagonal bar supports the gate an
    11·1 answer
  • The acceleration due to gravity near Earth ... Select one: a. varies inversely with the distance from the center of Earth. by. v
    10·1 answer
  • This planet orbit around the sun cuts across the path of another planet.
    10·1 answer
  • A vehicle with a mass of 2,553 kg accelerates at 10 m/s2. Find the force on the vehicle in Newtons.​
    9·1 answer
  • Imagine that you have three circuit elements: a single bulb, a piece of wire, and a battery. You start by keeping these three el
    10·1 answer
  • Pls help meh Kdjdjeidjndiejdididjdjjdidjdjdiejd
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!