Answer:
3. 3.5 s
Explanation:
The position of traveller A is given by the equation:

where
is the acceleration of A
t is the time measured from when A started the motion
The position of traveller B instead is given by

where a (acceleration) is the same as traveller A, and

is B's initial velocity. We can verify that the formula is correct by substituting t=2, and we get
, which means that B starts its motion 2 seconds later.
Traveller B overtakes traveller A when the two positions are the same, so:

Answer:
60 m/s
Explanation:
From the law of conservation of energy,
The kinetic energy of the plane = Energy of store in the spring when the plane lands.
1/2mv² = 1/2ke²
making v the subject of the equation.
v = √(ke²/m).................... Equation 1
Where v = the plane landing speed, k = spring constant, e = extension. m = mass of the plane.
Given: m = 15000 kg, k = 60000 N/m, e = 30 m.
Substitute into equation 1
v = √(60000×30²/15000)
v = √(4×900)
v = √(3600)
v = 60 m/s.
Hence the plane's landing speed = 60 m/s
Leaning against a brick wall.
All the others use scientific forces of work.
-Steel jelly.
Answer:
Worldwide Radio Communication
Explanation:
The ionosphere is important because it is through the ionosphere that world wide radio communication is possible.
Radio waves, gamma-rays, visible light, and all the other parts of the electromagnetic spectrum are electromagnetic radiation. Electromagnetic radiation can be described in terms of a stream of mass-less particles, ...
The electromagnetic spectrum is a map of all the types of light that we can identify. It separates all the types of light by wavelength because that directly relates to how energetic the wave is. More energetic wave
For most of history, visible light was the only known part of the electromagnetic spectrum. The ancient Greeks recognized that light traveled in straight lines and studied some of its properties, including reflection