Answer:
A. There was still 140 ml of volume available for the reaction
Explanation:
According to Avogadro's law, we have that equal volumes of all gases contains equal number of molecules
According to the ideal gas law, we have;
The pressure exerted by a gas, P = n·R·T/V
Where;
n = The number of moles
T = The temperature of the gas
R = The universal gas constant
V = The volume of the gas
Therefore, given that the volumes and number of moles of the removed air and added HCl are the same, the pressure and therefore, the volume available for the reaction will remain the same
There will still be the same volume available for the reaction.
Answer:
Fatty acids
Explanation:
Acetyl coA is a compound vital for the process of cellular respiration in the mitochondria. It is the starting material of the kreb's cycle or TCA cycle, which takes place in the mitochondria. During the metabolism of glucose (glycolysis), a molecule called PYRUVATE is first synthesized before becoming acetyl coA in the mitochondrion.
However, the metabolism of FATTY ACIDS (monomers of lipids) directly gives rise to acetyl coA without first becoming pyruvate. The fatty acids molecule undergo Beta- oxidation to produce acetyl coA, which enters the TCA cycle to continue cellular respiration.
Answer:
Heat is the transfer of energy. During energy transfer, the energy moves from the hotter object to the colder object. This means that the hotter object will cool down and the colder object will warm up. The energy transfer will continue until both objects are at the same temperature.
Explanation:
Answer:
C: The actual yield depends on the reaction conditions, but the theoretical yield varies only with reactant amounts
Explanation:
Looking at the options, the correct one is Option C because the actual yield usually depends on the conditions of the reaction, while the theoretical yield usually varies with only the amount of reactant.
Answer: -345.2 KJ
Explanation: As we know that ,dG=dH-TdS
T=25+273=298 K
dG= -356 x1000-298(-36)= -356000+10728
=-345272 j
= -345.2 KJ