In the context of multivalent ions, it is when it has multiple oxidative states.
Answer:
The correct answer is - yes, 4.57 g of solute per 100 ml of solution
Explanation:
The correct answer is yes we can calculate the solubility of X in the water at 22.0°C. The salt will remain after the evaporate from the dissolved and cooled down at 26°C.
Then, the amount of solute dissolved in the 700 ml solution at 26°C is the weighed precipitate: 0.032 kg = 32 g.
Then solublity will be :
32. g solute / 700 ml solution = y / 100 ml solution
⇒ y = 32. g solute × 100 ml solution / 700 ml solution = 4.57 g.
Thus, the answer is 4.57 g of solute per 100 ml of solution.
Answer:
Air and Water Temperature Increases
An increase in the air temperature will cause water temperatures to increase as well. ... Lower levels of dissolved oxygen due to the inverse relationship that exists between dissolved oxygen and temperature. As the temperature of the water increases, dissolved oxygen levels decrease.
Answer:
MgCl2 = 24 + 2(35.5)
= 95
mass of substance = mol × molar mass
= 0.119 × 95
= 11.305 g