I believe the answer is carbon dioxide
Answer: 14.1g
Explanation:
Given that,
number of moles of SiO2 = 0.235 moles
Mass in grams = Z (let unknown value be Z)
Molar mass of SiO2 = ?
To get the molar mass of SiO2, use the atomic mass
Silicon = 28g;
Oxygen = 16g
i.e Molar mass of SiO2 = 28g + (16g x 2)
= 28g + 32g
= 60g/mol
Now, apply the formula
Number of moles = Mass / molar mass
0.235 moles = Z / 60g/mol
Z = 0.235 moles x 60g/mol
Z = 14.1 g
Thus, the mass of SiO2 is 14.1 grams.
The statement that the friend made is not true. most of the mass of the plant is from carbon. the carbon comes from carbon dioxide which is used during photosynthesis. the left over carbon from photosynthesis is used to to help the plant gain mass. there is a process for this which is called cellular respiration
<h3>
Answer:</h3>

<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
- Analyzing Reactions RxN
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 2C + O₂ → 2CO₂
[Given] 0.25 moles O₂
[Solve] moles CO₂
<u>Step 2: Identify Conversions</u>
[RxN] 1 mol O₂ → 2 mol CO₂
<u>Step 3: Stoichiometry</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

In chemistry, the ball-and-stick model is a molecular ideal of a chemical matter which is to expose both the three-dimensional position of the atoms and the bonds among them. The atoms are normally symbolise by spheres, join by rods which shows the bonds.
Formaldehyde forms formaldehyde structure bond it shares double bond with O2 atoms.
Formaldehyde also known as methanol .
Methanol is colourless.
It is flammable.
It is gas at room temperature.
Methanol having pungent odor and it is a volatile organic compounds.
It is made by the composition of Hydrogen, oxygen, and carbons.
To know more about Formaldehyde here :
brainly.com/question/14895085?referrer=searchResults
#SPJ4