Answer:
The answer to your question is 160 g of Fe₂O₃
Explanation:
Data
mass of Fe = 112 g
mass of CO = in excess
mass of Fe₂O₃ = ?
Balanced chemical reaction
Fe₂O₃ + 3CO ⇒ 2Fe + 3CO₂
Process
1.- Calculate the molar mass of Fe₂O₃ and Fe
Molar mass Fe₂O₃ = (56 x 2) + (16 x 3) = 112 + 48 = 160 g
atomic mass of Fe = 56
2.- Use proportions to calculate the mass of Fe₂O₃ needed
160 g of Fe₂O₃ ------------------- 2(56) g of Fe
x g of Fe₂O₃ ------------------ 112 g of Fe
x = (112 x 160) / 2(56)
x = 17920/112
x = 160 g of Fe₂O₃
Answer:True
Explanation: An anion has a larger radius than a neutral atom because it gains valence electrons. There are added electron/electron repulsions in the valence shell that expand the size of the electron cloud, which results in a larger radius for the anion.
hit the crown for me pls :)
Have a great day
The answer is D because they would have to make quarries just below the surface to mine
Mineral ores much quicker (Quarries- a large hole/pit under ground used to get stone and minerals)
Answer:
The heat would flow from the hot solid to the cool solid until all temperatures are near equal.
The given question is incomplete. The complete question is as follows.
Which of the following best helps explain why an increase in temperature increases the rate of a chemical reaction?
(a) at higher temperatures, high-energy collisions happen less frequently.
(b) at low temperatures, low-energy collisions happen more frequently.
(c) at higher temperatures, less-energy collisions happen less frequently.
(d) at higher temperatures, high-energy collisions happen more frequently
Explanation:
When we increase the temperature of a chemical reaction then molecules of the reactant species tend to gain kinetic energy. As a result, they come into motion which leads to more number of collisions within the molecules.
Therefore, chemical reaction will take less amount of time in order to reach its end point. This means that there will occur an increase in rate of reaction.
Thus, we can conclude that the statement at higher temperatures, high-energy collisions happen more frequently, best explains why an increase in temperature increases the rate of a chemical reaction.