Answer:
so maximum velocity for walk on the surface of europa is 0.950999 m/s
Explanation:
Given data
legs of length r = 0.68 m
diameter = 3100 km
mass = 4.8×10^22 kg
to find out
maximum velocity for walk on the surface of europa
solution
first we calculate radius that is
radius = d/2 = 3100 /2 = 1550 km
radius = 1550 × 10³ m
so we calculate no maximum velocity that is
max velocity = √(gr) ...............1
here r is length of leg
we know g = GM/r² from universal gravitational law
so G we know 6.67 ×
N-m²/kg²
g = 6.67 ×
( 4.8×10^22 ) / ( 1550 × 10³ )
g = 1.33 m/s²
now
we put all value in equation 1
max velocity = √(1.33 × 0.68)
max velocity = 0.950999 m/s
so maximum velocity for walk on the surface of europa is 0.950999 m/s
Answer:
Following are the solution to the given question:
Explanation:
Its best approach to this measurement ought to be to indicate that there was a mistake throughout the calculation, as well as the gathering of further details while researching cells for bacteria, directly measuring the cell length of a colony. This chart illustrates its data, which scientists have observed that there's still a measurement.
Possible beat frequencies with tuning forks of frequencies 255, 258, and 260 Hz are 2, 3 and 5 Hz respectively.
The beat frequency refers to the rate at which the volume is heard to be oscillating from high to low volume. For example, if two complete cycles of high and low volumes are heard every second, the beat frequency is 2 Hz. The beat frequency is always equal to the difference in frequency of the two notes that interfere to produce the beats. So if two sound waves with frequencies of 256 Hz and 254 Hz are played simultaneously, a beat frequency of 2 Hz will be detected. A common physics demonstration involves producing beats using two tuning forks with very similar frequencies. If a tine on one of two identical tuning forks is wrapped with a rubber band, then that tuning forks frequency will be lowered. If both tuning forks are vibrated together, then they produce sounds with slightly different frequencies. These sounds will interfere to produce detectable beats. The human ear is capable of detecting beats with frequencies of 7 Hz and below.
A piano tuner frequently utilizes the phenomenon of beats to tune a piano string. She will pluck the string and tap a tuning fork at the same time. If the two sound sources - the piano string and the tuning fork - produce detectable beats then their frequencies are not identical. She will then adjust the tension of the piano string and repeat the process until the beats can no longer be heard. As the piano string becomes more in tune with the tuning fork, the beat frequency will be reduced and approach 0 Hz. When beats are no longer heard, the piano string is tuned to the tuning fork; that is, they play the same frequency. The process allows a piano tuner to match the strings' frequency to the frequency of a standardized set of tuning forks.
Learn more about beat frequency here : brainly.com/question/14157895
#SPJ4
El unico que se es el del oxígeno: o2