Answer:
q = 8.57 10⁻⁵ mC
Explanation:
For this exercise let's use Newton's second law
F = ma
where force is magnetic force
F = q v x B
the bold are vectors, if we write the module of this expression we have
F = qv B sin θ
as the particle moves perpendicular to the field, the angle is θ= 90º
F = q vB
the acceleration of the particle is centripetal
a = v² / r
we substitute
qvB = m v² / r
qBr = m v
q =
The exercise indicates the time it takes in the route that is carried out with constant speed, therefore we can use
v = d / t
the distance is ¼ of the circle,
d =
d =
we substitute
v =
r =
let's calculate
r =
2 2.2 10-3 88 /πpi
r = 123.25 m
let's substitute the values
q =
7.2 10-8 88 / 0.6 123.25
q = 8.57 10⁻⁸ C
Let's reduce to mC
q = 8.57 10⁻⁸ C (10³ mC / 1C)
q = 8.57 10⁻⁵ mC
The correct answer for the question is Chordophone
Chordophone is an instrument in which a stretched, vibrating string produces the initial sound. Strings instruments produce sound through the vibration of strings. The length, tightedness, and thickness determines the sound produced by the strings.
T² caries directly as R³ .
This is Kepler's 3rd law of planetary motion .
Answer:
d = 11.1 m
Explanation:
Since the inclined plane is frictionless, this is just a simple application of the conservation law of energy:

Let d be the displacement along the inclined plane. Note that the height h in terms of d and the angle is as follows:

Plugging this into the energy conservation equation and cancelling m, we get

Solving for d,

Answer:
Its d
atome contain
negative electrons,
positive protons and uncharged neutrons.
Explanation: