Answer:
The answer is Conduction.
Explanation:
In the first scenario given in the question where the student is holding the marshmallows on the side of the flame, she is subjecting the marshmallow the a heat transfer by radiation since the marshmallow is not in direct contact with the fire.
Heat transfer by radiation is done so with the heating of the air between the object and the heat source and does not need any contact between the source and the heated material.
And later when she places the marshmallow over the flames, the heat transfer type she is observing is heat transfer by conduction.
I hope this answer helps.
Answer:
W= 4.89 KJ
Explanation:
Lets take
temperature of hot water T₁ = 100⁰C
T₁ = 373 K
Temperature of cold ice T₂= 0⁰C
T₂ = 273 K
The latent heat of ice LH= 334 KJ
The heat rejected by the engine Q= m .LH
Q₂= 0.04 x 334
Q₂= 13.36 KJ
Heat gain by engine = Q₁
For Carnot engine


Q₁ = 18.25 KJ
The work W= Q₁ - Q₂
W= 18.25 - 13.36 KJ
W= 4.89 KJ
Answer:
Energy (I need one more brainlist can i has?)
Explanation:
- Nuclear fusion occurs when two light nuclei fuse together into a heavier nucleus
- Nuclear fission occurs when a heavy, unstable nucleus breaks apart into two or more lighter nuclei
In both processes, the mass of the products is always smaller than the mass of the initial nuclei. This means that part of the initial mass has been converted into something else: into energy, which is released in the process.
The amount of energy released in the process can be calculated by using the famous Einstein's equivalence:
where m is the difference between the mass of the product and the initial mass of the nuclei, and c is the speed of light.
Answer: 83.3 W
Explanation: I think, I’m not sure. If I’m wrong correct me ;)
Answer:
The bell has a potential energy of 8550 [J]
Explanation:
Since the belt is 45 [m] above ground level, only potential energy is available. And this energy can be calculated by means of the following equation.
![E_{p}= W*h\\E_{p} = 190*45\\E_{p}=8550[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%3D%20W%2Ah%5C%5CE_%7Bp%7D%20%3D%20190%2A45%5C%5CE_%7Bp%7D%3D8550%5BJ%5D)