Answer:
c) 1.0 kg
Explanation:
The mass of the stick will be located at the centre of the metre rule. Since the rock is located 0.25m from the pivot, the mass of the meter rule is also 0.25m to the Right of the support
According to law of moment
Sum of clockwise moment = sum of anti clockwise moments
Clockwise moment = M×0.25(mass of metre rule is M)
CW moment = 0.25M
Anti clockwise moment = 0.25×1
ACW moments = 0.25kgm
Equate;
0.25M = 0.25
M = 0.25/0.25
M = 1.0kg
Hence the mass of the metre rule is 1.0kg
Answer:
The four gas giants in our solar system are Neptune, Uranus, Saturn, and Jupiter. These are also called the Jovian planets. "Jovian planet" refers to the Roman god Jupiter and was intended to indicate that all of these planets were similar to Jupiter.
Explanation:
i hope this helps
The attractive force between all matter in the universe is gravity.
Answer:
hmax = 1/2 · v²/g
Explanation:
Hi there!
Due to the conservation of energy and since there is no dissipative force (like friction) all the kinetic energy (KE) of the ball has to be converted into gravitational potential energy (PE) when the ball comes to stop.
KE = PE
Where KE is the initial kinetic energy and PE is the final potential energy.
The kinetic energy of the ball is calculated as follows:
KE = 1/2 · m · v²
Where:
m = mass of the ball
v = velocity.
The potential energy is calculated as follows:
PE = m · g · h
Where:
m = mass of the ball.
g = acceleration due to gravity (known value: 9.81 m/s²).
h = height.
At the maximum height, the potential energy is equal to the initial kinetic energy because the energy is conserved, i.e, all the kinetic energy was converted into potential energy (there was no energy dissipation as heat because there was no friction). Then:
PE = KE
m · g · hmax = 1/2 · m · v²
Solving for hmax:
hmax = 1/2 · v² / g
Kinetic energy = (1/2) (mass) (speed)²
BUT . . . in order to use this equation just the way it's written,
the speed has to be in meters per second. So we'll have to
make that conversion.
KE = (1/2) · (1,451 kg) · (48 km/hr)² · (1000 m/km)² · (1 hr/3,600 sec)²
= (725.5) · (48 · 1000 · 1 / 3,600)² (kg) · (km·m·hr / hr·km·sec)²
= (725.5) · ( 40/3 )² · ( kg·m² / sec²)
= 128,978 joules (rounded)