F=ma
Tension - weight = mass x acceleration
T - 5(9.81) = 5 x 1
T = 5 + 5(9.81)
T = 54.05 N
T ≈ 54 N
Imagine an object is moving in one dimension on a number line, and for this we'll say that the numbers on the line are a metre apart. If the object moves from 2 m to 7 m, the change in position is 7-2=+5 metres. But if the object moves back from 7 m to 2 m, the change in position is 2-7=-5 metres. since

, and time is always positive, velocity will be positive in one direction and negative in the other direction.
Answer:

Explanation:
The original equation is:

We notice that:
- we have 1 atom of Fe on the left, and 2 atoms of Fe on the right
- we have 2 atoms of O on the left, and 3 atoms of O on the right
Therefore, the equation is not balanced.
In order to balance it, we can add:
- a coefficient 3 in front of 
- a coefficient 2 in front of 
So we have:

Now the oxygen is balanced, but the iron it not balanced yet, since we have 1 Fe on the left and 4 on the right. Therefore, we should add a coefficient 4 on the Fe on the left:

Answer:
Tension, T = 2038.09 N
Explanation:
Given that,
Frequency of the lowest note on a grand piano, f = 27.5 Hz
Length of the string, l = 2 m
Mass of the string, m = 440 g = 0.44 kg
Length of the vibrating section of the string is, L = 1.75 m
The frequency of the vibrating string in terms of tension is given by :





T = 2038.09 N
So, the tension in the string is 2038.09 N. Hence, this is the required solution.
Answer:
Hence, work done= 287.54 J
Explanation:
Given data:
angle of ramp with the ground θ =20°
force applied = 76 N
work done on the crate to slide down 4 m down the ramp
W= F×d cosθ ( only the cos component of the force will slide the crate down)
W= 76×4×cos20= 287.54 J