Answer:
1.55 × 10²⁴ atoms Xe
General Formulas and Concepts:
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
- STP (Standard Conditions for Temperature and Pressure) = 22.4 L per mole at 1 atm, 273 K
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
[Given] 57.5 L Xe at STP
[Solve] atoms Xe
<u>Step 2: Identify Conversions</u>
[STP] 22.4 L = 1 mol
Avogadro's Number
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Divide/Multiply [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
1.54583 × 10²⁴ atoms Xe ≈ 1.55 × 10²⁴ atoms Xe
The correct options are as follows:
1. A.
A synthesis reaction is a type of reaction in which two or more reactants combine together to form only one product. Synthesis reaction always release energy in form of light and heat, therefore, they are usually exothermic reactions. In the option given in A, nitrogen and nitrogen combine together to form ammonia; this is a synthesis reaction.
2. D
A radioactive half life refers to the amount of time it will take for half of an original radioactive isotope to decay.
In the question given above, the half life of the element is 1000. Thus, in 1000 years only half of the original amount will remain. In another 1000 years only 1/4 of the original amount will remain and in another 1000 years only 1/8 of the original amount will remain. Therefore, it will take 3 half lives before 1/8 of the original sample remain.<span />
Answer:True
Explanation: An anion has a larger radius than a neutral atom because it gains valence electrons. There are added electron/electron repulsions in the valence shell that expand the size of the electron cloud, which results in a larger radius for the anion.
hit the crown for me pls :)
Have a great day
The enthalpy of atomization (also atomisation in British spelling) is the enthalpy change that accompanies the total separation of all atoms in a chemical substance (either a chemical element or a chemical compound)
Answer:
0.007 mol
Explanation:
We can solve this problem using the ideal gas law:
PV = nRT
where P is the total pressure, V is the volume, R the gas constant, T is the temperature and n is the number of moles we are seeking.
Keep in mind that when we collect a gas over water we have to correct for the vapor pressure of water at the temperature in the experiment.
Ptotal = PH₂O + PO₂ ⇒ PO₂ = Ptotal - PH₂O
Since R constant has unit of Latm/Kmol we have to convert to the proper unit the volume and temperature.
P H₂O = 23.8 mmHg x 1 atm/760 mmHg = 0.031 atm
V = 1750 mL x 1 L/ 1000 mL = 0.175 L
T = (25 + 273) K = 298 K
PO₂ = 1 atm - 0.031 atm = 0.969 atm
n = PV/RT = 0.969 atm x 0.1750 L / (0.08205 Latm/Kmol x 298 K)
n = 0.007 mol