First, we convert the moles of each substance into the concentration using the volume of the reactor.
[SO₃] = 0.425/1.5 = 0.283 M
[SO₂] = 0.208 / 1.5 = 0.139 M
[O₂] = 0.208/1.5 = 0.139 M
The equilibrium constant is calculated by:
Kc = [SO₃]² / [O₂][SO₂]²
Kc = (0.283)²/(0.139)(0.139)²
Kc = 29.8 = 2.98 x 10¹
The answer is C
In every molecule of

there is 8 atoms of Carbon.
IF we have 3.7 moles of

to find the number of moles of Carbon, just multiply by 8
3.7 * 8 = 29.6 mol Carbon
Answer:
1.09 L
Explanation:
There is some info missing. I think this is the original question.
<em>Calculate the volume in liters of a 0.360 mol/L barium acetate solution that contains 100 g of barium acetate. Be sure your answer has the correct number of significant digits.</em>
<em />
The molar mass of barium acetate is 255.43 g/mol. The moles corresponding to 100 grams are:
100 g × (1 mol/255.43 g) = 0.391 mol
0.391 moles of barium acetate are contained in an unknown volume of a 0.360 mol/L barium acetate solution. The volume is:
0.391 mol × (1 L/0.360 mol) = 1.09 L
Answer:
2.13g
Explanation:
Atomic mass of CO2 = 12 + 32 = 44g/Mol
Atomic mass of C3H8 = 36 + 8 = 44g/Mol
Reaction
C3H8 + 5O2 --> 3CO2 + 4H2O
3CO2 = 6.39g
Required C3H8 = (6.39/(44 x 3)) x 44 = 2.13g