Answer:
Vy = 26 m/s sin 30 = 13 m/s vertical speed
t = Vy / a = 13 m/s / 9.80 m/s^2 = 1.33 sec time to reach Vy = 0
H = Vy t + 1/2 g t^2
H = 13 m/s * 1.33 sec - 1.33^2 * 9.8 / 2 m = 8.62 m
The average acceleration between t = 5.6 s and t = 8.5 s is 2.31 m/s²
<h3>What is acceleration?</h3>
Acceleration is defined as the rate change of velocity with time.
acceleration a = (Δv) / (Δt)
An object is moving with initial velocity u =5.7 m/s and its final velocity v= -1.0 m/s.
Time taken for the change in speed, t= 8.5 - 5.6 = 2.9 seconds
The acceleration is given by
a = (-1 - 5.7)/ 2.9
a = - 2.31 m/s²
|a | = 2.31 m/s²
Thus, the object's acceleration is 2.31 m/s²
Learn more about acceleration.
brainly.com/question/12550364
#SPJ1
First, calculate how long the ball is in midair. This will depend only on the vertical displacement; once the ball hits the ground, projectile motion is over. Since the ball is thrown horizontally, it originally has no vertical speed.
t = time vi = initial vertical speed = 0m/s g = gravity = -9.8m/s^2 y = vertical displacement = -45m
y = .5gt^2 [Basically, in this equation we see how long it takes the ball to fall 45m] -45m = .5 (-9.8m/s^2) * t^2 t = 3.03 s
Now we know that the ball is midair for 3.03s. Since horizontal speed is constant we can simply use:
x = horizontal displacement v = horizontal speed = 25m/s t = time = 3.03s
x = v*t x = 25m/s * 3.03s = 75.76 m Thus, the ball goes about 75 or 76 m from the base of the cliff.
The outer planets have a high gravity due to their large size
Answer:
Multiply the air pressure by the area of the tabletop.
Explanation:
The relationship between pressure, force and area is given by:

where in this case, p is the air pressure, F is the force exerted and A the area of the tabletop. By re-arranging the equation, we can solve for F, the force exerted:

So, the correct answer is:
The force exerted on the tabletop can be found by multiplying the air pressure by the area of the tabletop.