Answer:
The answer is 4 pounds
Explanation:
The explanation is that 1 kilogram is equal to 2 pounds so multiply the kilogram with the 1 pound
Answer:
See the explanation below
Explanation:
The speed of sound waves can be calculated using the following equation:
![v_{s}=\sqrt{\frac{E}{ro} } \\where:\\E = Young's modulus [GPa]\\ro = density of the material [kg/m^3]](https://tex.z-dn.net/?f=v_%7Bs%7D%3D%5Csqrt%7B%5Cfrac%7BE%7D%7Bro%7D%20%7D%20%5C%5Cwhere%3A%5C%5CE%20%3D%20Young%27s%20modulus%20%5BGPa%5D%5C%5Cro%20%3D%20density%20of%20the%20material%20%5Bkg%2Fm%5E3%5D)
Let's do the exercise of comparing two materials one denser than the other, as is steel and aluminum
ro_steel = 7500 [kg/m^3]
ro_aluminum = 2700 [kg/m^3]
E_steel = 200 [GPa]
E_aluminum = 70 [GPa]
Now replacing the values in the equation for each material.
![v_{steel}=\sqrt{\frac{200*10^9}{7500}}\\ v_{steel}=5163[m/s]](https://tex.z-dn.net/?f=v_%7Bsteel%7D%3D%5Csqrt%7B%5Cfrac%7B200%2A10%5E9%7D%7B7500%7D%7D%5C%5C%20v_%7Bsteel%7D%3D5163%5Bm%2Fs%5D)
And for the aluminum
![v_{aluminum}=\sqrt{\frac{70*10^9}{2700} }\\ v_{aluminum}=5091.75[m/s]](https://tex.z-dn.net/?f=v_%7Baluminum%7D%3D%5Csqrt%7B%5Cfrac%7B70%2A10%5E9%7D%7B2700%7D%20%7D%5C%5C%20v_%7Baluminum%7D%3D5091.75%5Bm%2Fs%5D)
In this way we can see that sound propagates faster in denser materials.
The drop of purple food dye will sink to the bottom while expanding around the cup turning the water purple