Answer:
a).Control volume
b).
= 502.416 J/kg-K
c).
= 4.187 kJ/kg-K
d).
= 87.91°C
Explanation:
a). It is a control volume system because mass is varying in the system.
b). Specific heat of nickel is
= 502.416 J/kg-K
c). Specific heat of water is
= 4.187 kJ/kg-K
d).We know that
net energy transfer = change in internal energy




= 87.91°C
Answer:
the surface heat-transfer coefficient due to natural convection during the initial cooling period. = 4.93 w/m²k
Explanation:
check attachement for answer explanation
Full Question
1. Correct the following code and
2. Convert the do while loop the following code to a while loop
declare integer product
declare integer number
product = 0
do while product < 100
display ""Type your number""
input number
product = number * 10
loop
display product
End While
Answer:
1. Code Correction
The errors in the code segment are:
a. The use of do while on line 4
You either use do or while product < 100
b. The use of double "" as open and end quotes for the string literal on line 5
c. The use of "loop" statement on line 7
The correction of the code segment is as follows:
declare integer product
declare integer number
product = 0
while product < 100
display "Type your number"
input number
product = number * 10
display product
End While
2. The same code segment using a do-while statement
declare integer product
declare integer number
product = 0
Do
display "Type your number"
input number
product = number * 10
display product
while product < 100
Precision and accuracy are two ways that scientists think about error. Accuracy refers to how close a measurement is to the true or accepted value. Precision refers to how close measurements of the same item are to each other. Precision is independent of accuracy. Hope this help you
⬜⬛⬛⬜
Determine whether w is in the span of the given vectors v1; v2; : : : vn
. If your answer is yes, write w as a linear combination of the vectors v1; v2; : : : vn and enter the coefficients as entries of the matrix as instructed is given below
Explanation:
1.Vector to be in the span means means that it contain every element of said vector space it spans. So if a set of vectors A spans the vector space B, you can use linear combinations of the vectors in A to generate any vector in B because every vector in B is within the span of the vectors in A.
2.And thus v3 is in Span{v1, v2}. On the other hand, IF all solutions have c3 = 0, then for the same reason we may never write v3 as a sum of v1, v2 with weights. Thus, v3 is NOT in Span{v1, v2}.
3.In the theory of vector spaces, a set of vectors is said to be linearly dependent if at least one of the vectors in the set can be defined as a linear combination of the others; if no vector in the set can be written in this way, then the vectors are said to be linearly independent.
4.Given a set of vectors, you can determine if they are linearly independent by writing the vectors as the columns of the matrix A, and solving Ax = 0. If there are any non-zero solutions, then the vectors are linearly dependent. If the only solution is x = 0, then they are linearly independent.