Answer: 20 m/s
Explanation: To solve this problem we have to consider the expression of the kinetic energy given by:
Ekinetic=(1/2)*(m*v^2)
then E=0.5*30Kg*(20 m/s)^2=15*400=6000J
Answer:
Plate separation of each capacitor is 101.132 °A
Explanation:
The formula to calculate the capacitance in empty space as a function of distance (square parallel plates) is:

clearing for distance:

In a free body diagram for an object projected upwards;
- the acceleration due to gravity on the object is always directed downwards.
- the velocity of the object is always in the direction of the object's motion.
An object projected upwards is subjected to influence of acceleration due to gravity.
As the object accelerates upwards, its velocity decreases until the object reaches maximum height where its velocity becomes zero and as the object descends its velocity increases, which eventually becomes maximum before the object hits the ground.
To construct a free body diagram for this motion, we consider the following;
- the acceleration due to gravity on the object is always directed downwards
- the velocity of the object is always in the direction of the object's motion.
<u>For instance:</u>
upward motion for velocity ↑ downward motion for velocity ↓
↑ ↓
↑ ↓
acceleration due to gravity ↓
↓
↓
Learn more here: brainly.com/question/13235430
Of the list, Ultraviolet waves have the shortest wavelength
Answer:

Explanation:
For a linear elastic material Young's modulus is a constant that is given by:

Here, F is the force exerted on an object under tensio, A is the area of the cross-section perpendicular to the applied force,
is the amount by which the length of the object changes and
is the original length of the object. In this case the force is the weight of the mass:

Replacing the given values in Young's modulus formula:
