<h2>
The velocity of the boat relative to an observer standing on either bank = u = 18 
</h2>
Explanation:
Let speed of the boat in still water = u 
speed of the river water = v 
Relative speed of the boat in the water against the river flow is given by
Upstream speed = u - v ------- (1)
⇒ u - v = 12
------ (2)
Given that speed of the water = 6 
Now velocity of the boat is given From equation (2)
⇒ u = 12 + v
Put the value of v = 6 , we get
⇒ u = 12 + 6
⇒ u = 18
therefore , the velocity of the boat relative to an observer standing on either bank = u = 18 
Momentum is the quantity of moving motion if that helps in anyway :)
Answer:
F = 614913.88 N
Explanation:
We are given;
Mass of pile driver; m = 1800 kg
Height of fall of pole driver; h = 4.6 m
Depth driven into beam; d = 13.6 cm = 0.136 m
Now, from energy equations and applying to this question, we can write that;
Workdone = Change in potential energy
Formula for workdone is; W = F × d
While the average potential energy here is; W = mg(h + d)
Thus;
Fd = mg(h + d)
Where F is the average force exerted by the beam on the pile driver while in bringing it to rest.
Making F the subject, we have;
F = mg(h + d)/d
F = 1800 × 9.81 × (4.6 + 0.136)/0.136
F = 614913.88 N
When he <span>determined that the drop time was inversely proportional to the horizontal velocity, the answer for it would be </span>Bob's conclusion was right because the data points were connected. The connection of the x and y axis varied because it is inversely proportional.