Answer:
parallel circuit
Explanation:
In a parallel circuit, the potential difference across each of the resistors that make up the circuit is the same. This leads to a higher current flowing through each resistor and subsequently the total current flowing through all the resistors is higher.
The question is incomplete! The complete question along with answer and explanation is provided below.
Question:
A 0.5 kg mass moves 40 centimeters up the incline shown in the figure below. The vertical height of the incline is 7 centimeters.
What is the change in the potential energy (in Joules) of the mass as it goes up the incline?
If a force of 1.0 N pulled up and parallel to the surface of the incline is required to raise the mass back to the top of the incline, how much work is done by that force?
Given Information:
Mass = m = 0.5 kg
Horizontal distance = d = 40 cm = 0.4 m
Vertical distance = h = 7 cm = 0.07 m
Normal force = Fn = 1 N
Required Information:
Potential energy = PE = ?
Work done = W = ?
Answer:
Potential energy = 0.343 Joules
Work done = 0.39 N.m
Explanation:
The potential energy is given by
PE = mgh
where m is the mass of the object, h is the vertical distance and g is the gravitational acceleration.
PE = 0.5*9.8*0.07
PE = 0.343 Joules
As you can see in the attached image
sinθ = opposite/hypotenuse
sinθ = 0.07/0.4
θ = sin⁻¹(0.07/0.4)
θ = 10.078°
The horizontal component of the normal force is given by
Fx = Fncos(θ)
Fx = 1*cos(10.078)
Fx = 0.984 N
Work done is given by
W = Fxd
where d is the horizontal distance
W = 0.984*0.4
W = 0.39 N.m
<h3>
Answer:</h3>
1.3 Amps
<h3>
Explanation:</h3>
<u>We are given;</u>
A circuit with resistors, R1 and R2
R1 = 7 Ω
R2 = 11 Ω
Voltage = 24 V
We are required to calculate the current in the circuit.
<h3>Step 1: We need to find the effective resistance.</h3>
When resistors are arranged in series, the effective resistance is calculated by;
Rt = R₁ + R₂ + R₃ + ..........Rₙ
Therefore;
Total resistance = 7 + 11
= 18 Ω
<h3>Step 2: Calculate the current in the circuit</h3>
From the ohm's law;
V = IR
Rearranging the formula;
I = V/R
Thus;
I = 24 V ÷ 18 Ω
= 1.333 Amps
= 1.3 Amps
Thus, the current in the circuit is 1.3 Amps
Answer;
=15855.40 kg/m^3
Explanation;
Volume (V) of the cylinder = pi x r^2 x h
V = 3.14 x (44/2 x 10^-3)^2 x 41.5 x 10^-3
V = 6.307 x 10^-5 m^3
By density = m/V
mass = 1 kg
density = 1/(6.307 x 10^-5) = 15855.40 kg/m^3