Answer:
1.66 kg
Explanation:
Given that a 0.83-kg block is hung from and stretches a spring that is attached to the ceiling.
From Hook's law
F = Ke
But F = mg
Substitute mg for force in the Hook's law
Mg = ke
0.83 × 9.8 = ke
Make K the subject of formula
8.134 = Ke
K = 8.134 /e
Given that a second block is attached to the first one, and the amount that the spring stretches from its unstretched length triples.
That is
(0.83 + M) × 9.8 = K (3e)
Substitutes K into the above equation
(0.83 + M) × 9.8 = 8.134 / e (3e)
The e will cancel out
(0.83 + M) × 9.8 = 24.402
0.83 + M = 24.402/9.8
0.83 + M = 2.49
M = 2.49 - 0.83
M = 1.66 kg
Therefore, the mass of the second block is 1.66kg
Answer:
There is no options for this answer
Explanation:
<span>First of all, the bolts wont hit the ground at equal time intervals because each bolt is constantly increasing. Therefore, the top will have different velocity with the bottom bolt at all times. this means that the bolts will speed up more as they are higher which will make the interval time shorter. therefore, the time will decrease</span>
False.
Cause You Can Repurpose Any Building
To solve this problem we will apply the concept related to the electric field. The magnitude of each electric force with which a pair of determined charges at rest interacts has a relationship directly proportional to the product of the magnitude of both, but inversely proportional to the square of the segment that exists between them. Mathematically can be expressed as,

Here,
k = Coulomb's constant
V = Voltage
r = Distance
Replacing we have


Therefore the magnitude of the electric field is 