Answer:
= 1.9 cm
Explanation:
The magnification of a microscope is the product of the magnification of the eyepiece by the magnifier with the objective
M = M₀ 
Where M₀ is the magnification of the objective and
is the magnification of the eyepiece.
The eyepiece is focused to the near vision point (d = 25 cm)
= 25 /
The objective is focused on the distances of the tube (L)
M₀ = -L / f₀
Substituting
M = - L/f₀ 25/
1) Let's look for the focal length of the eyepiece (faith)
= - L 25 / f₀ M
M = 400X = -400
= - 12 25 /0.40 (-400)
= 1.875 cm
Let's approximate two significant figures
= 1.9 cm
Answer:
he polarity of the electromagnet is determined by the direction the current. The north pole of the electromagnet is determined by using your right hand. Wrap your fingers around the coil in the same direction as the current is flowing (conventional current flows from + to -).
Explanation:
Input heat, Qin = 4 x 10⁵ J
Output heat, Qout = 3.5 x 10⁵ J
From the first Law of thermodynamics, obtain useful work performed as
W = Qin - Qout
= 0.5 x 10⁵ J
By definition, the efficiency is
η = W/Qin
= 100*(0.5 x 10⁵/4 x 10⁵)
= 12.5%
Answer: The efficiency is 12.5%
The net force of the object is equal to the force applied minus the force of friction.
Fnet = ma = F - Ff
12 kg x 0.2 m/s² = 15 N - Ff
The value of Ff is 12.6 N. This force is equal to the product of the normal force which is equal to the weight in horizontal surface and the coefficient of friction.
Ff = 12.6 N = k(12 kg)(9.81 m/s²)
The value of k is equal to 0.107.
Answer:
=170kcal
Explanation:
We first calculate the amount of energy required to melt the alcohol using the formula: MLf, where Lf is the latent heat of fussion
We then calculate amount of heat required to raise the temperature of liquid alcohol to -14° C using MC∅. We then add the two.
Thus ΔH=MLf+MC∅
ΔH=2kg×25kcal/kg+ 2kg×(0.6kcal/kg.K×(-14-⁻114)
=50kcal+120kcal
=170kcal