Answer:
C. Equals the sum of all forms of energy contained within the system.
D. Equals the heat entering the system at constant volume.
E. Equals the heat entering the system plus the work done on the system
Explanation:
Internal energy is defined as the sum of internal kinetic energy and internal potential energy, that is, the energy contained within the system.
The first law of thermodynamics relates the change in the internal energy with the heat entering the system (Q) and work done on the system (W), with the following expression:

If the system is at constant volume the work done is zero. Therefore, the heat entering the system increases its internal energy:

Answer:
98%
Explanation:
Given parameters
Mass of motor = 10kg
Height = 2m
Time = 2s
Power input = 100w
Unknown
Efficiency = ?
Solution
Efficiency is the percentage of the power output to the power input.
Power is the rate at which work is done.
Power output = mass x g x height / time
g is the acceleration due to gravity
Power output = 10x 2 x 9.8 / 2 = 98W
Efficiency = power output/ power input x 100
Efficiency = 98/100 x 100 = 98%
To measure the mass, you would use a balance. To measure the volume, you can use a variety of ounces, cups, pints, quarts, and gallons. Good luck!
Answer:
'Incident rays that are parallel to the central axis are sent through a point on the near side of the mirror'.
Explanation:
The question is incomplete, find the complete question in the comment section.
Concave mirrors is an example of a curved mirror. The outer surface of a concave mirror is always coated. On the concave mirror, we have what is called the central axis or principal axis which is a line cutting through the center of the mirror. The points located on this axis are the Pole, the principal focus and the centre of curvature. <em>The focus point is close to the curved mirror than the centre of curvature.</em>
<em></em>
During the formation of images, one of the incident rays (rays striking the plane surface) coming from the object and parallel to the principal axis, converges at the focus point after reflection because all incident rays striking the surface are meant to reflect out. <em>All incident light striking the surface all converges at a point on the central axis known as the focus.</em>
Based on the explanation above, it can be concluded that 'Incident rays that are parallel to the central axis are sent through a point on the near side of the mirror'.
They are trailing the same speed as it states in the question they are heeding toward each other a 70 mph <span />