Solution :
Michaelis-Menten kinetics in the field of biochemistry is considered as one of the well known models for enzyme kinetics. The model represents an equation that describes the enzymatic reactions's rate by relating the reaction rate to the substrate's concentration. The equation is named after the two famous scientists, Leonor Michaelis and Maud Menten.
The formula is :
![$v=\frac{V_{max}[S]}{K_M + [S]}$](https://tex.z-dn.net/?f=%24v%3D%5Cfrac%7BV_%7Bmax%7D%5BS%5D%7D%7BK_M%20%2B%20%5BS%5D%7D%24)
where v = velocity of reaction
= maximum rate achieved
= Michaelis constant
[S] = concentration of the substrate, S
According to the question, by putting the velocity of reaction, v as
, we get the above equation as
![$[S]= \frac{K_M}{3}$](https://tex.z-dn.net/?f=%24%5BS%5D%3D%20%5Cfrac%7BK_M%7D%7B3%7D%24)
Therefore the answer is ![$[S]= \frac{K_M}{3}$](https://tex.z-dn.net/?f=%24%5BS%5D%3D%20%5Cfrac%7BK_M%7D%7B3%7D%24)
I didn't want to type all of this, so instead I showed proof and gave you the answer.
Answer: The formula of Newtons second law of motion is F=MA so therefore it would be written like this Force = Mass X Acceleration
F = 5 x 2
F = 10 N
Answer:
ρ = Mass / Volume definition of density
ρ = 5 g / 1cm^3 = 5 g / cm^3
Since the other object is made of the same metal its density is the same:
ρ = 5 g/cm^3
Answer: Sound recording and production
Explanation: Digital audio is also the name for the entire technology of sound recording and reproduction using audio signals that have been encoded in digital form.