Complete Question
For each of the following scenarios, describe the force providing the centripetal force for the motion:
a. a car making a turn
b. a child swinging around a pole
c. a person sitting on a bench facing the center of a carousel
d. a rock swinging on a string
e. the Earth orbiting the Sun.
Answer:
Considering a
The force providing the centripetal force is the frictional force on the tires \
i.e 
where
is the coefficient of static friction
Considering b
The force providing the centripetal force is the force experienced by the boys hand on the pole
Considering c
The force providing the centripetal force is the normal from the bench due to the boys weight
Considering d
The force providing the centripetal force is the tension on the string
Considering e
The force providing the centripetal force is the force of gravity between the earth and the sun
Explanation:
Answer:
Explanation:
Width of central diffraction peak is given by the following expression
Width of central diffraction peak= 2 λ D/ d₁
where d₁ is width of slit and D is screen distance and λ is wave length.
Width of other fringes become half , that is each of secondary diffraction fringe is equal to
λ D/ d₁
Width of central interference peak is given by the following expression
Width of each of bright fringe = λ D/ d₂
where d₂ is width of slit and D is screen distance and λ is wave length.
Now given that the central diffraction peak contains 13 interference fringes
so ( 2 λ D/ d₁) / λ D/ d₂ = 13
then ( λ D/ d₁) / λ D/ d₂ = 13 / 2
= 6.5
no of fringes contained within each secondary diffraction peak = 6.5
Catalysts
a catalyst is something added to a reaction that speeds it up (or lowers the activation energy)
increasing the temp would speed up the whole reaction but not lower the activation energy
so B.