The resultant displacement between the two vectors will increase.
The resultant of the two vectors is given by parallelogram law of vectors.
The parallelogram law of vector addition states that if two vectors are represented in magnitude and direction by the adjacent sides of a parallelogram, the diagonal of the parallelogram drawn from the point of intersection of the vectors represents the resultant vector in magnitude and direction.
The resultant of these vectors, say vector A, and B, is given as;

When;
θ = 90°

When;
θ = 120°

Thus, the resultant displacement between the two vectors will increase.
Learn more here: brainly.com/question/20885836
Answer:
D. Freezing?
Explanation:
Get water, put it in the freezer, turns into ice after a few hours.
Answer:
Components: 0.0057, -0.0068. Magnitude: 0.0089 m/s
Explanation:
The displacement in the x-direction is:

While the displacement in the y-direction is:

The time taken is t = 304 s.
So the components of the average velocity are:


And the magnitude of the average velocity is

Internal and external combustion engines are two types of heat engines: they convert thermal energy into mechanical energy. The main difference between internal and external combustion engine is that in internal combustion engines, the working fluid burns inside the cylinder, whereas in external combustion engines, combustion takes place outside the cylinder and heat is then transferred to the working fluid.
Answer:

Explanation:
The x- and y- components of the velocity vector can be written as following:


Since the angle θ and the magnitude of the velocity is given, the vector representation can be written as follows:
