It creates chlorofluorocarbons(CFCs) also would create biooxygen but in the multiple choice it only shows the CFCs
a is the correct answer .
2.4 × 10^24
Answer:
Explanation:
THE PHOTOCHEMICAL(LIGHT) REACTIONS :This is a phase of photosynthesis where sunlight is used as a source of energy to manufacture two chemical compounds which are "Reduced nicotinamide adenine dinucleotide phosphate"-NADPH and "Adenosine triphosphate"-ATP.This phase of photosynthesis involves 4 steps or reactions which are :
STEP 1 : Activation or Energization of chlorophyll - In this reaction,chlorophyll molecules in green algae or plants absorb sunlight and become activated,that is the electrons of the chlorophyll molecule acquire solar energy and become excited.
STEP 2 : PHOTOLYSIS OF WATER - Here the energy absorbed by the chlorophyll molecules are used to split water molecules into H+ ions and OH-- ions.
STEP 3:Formation of NADPH -The hydrogen ions (H+) produced reacts with an NADP ( an electron carrier in the chlorophyll) to form NADPH.
STEP 4: FORMATION OF ATP - The high energy generated from the electron transfer process or chain is used to add a phosphate group to ADP (Adenosine dphosphate) to form ATP.
DARK PHASE :In this phase of photosynthesis,the NADPH generated in the light phase is used as a reducing equivalent to reduce CO2 to form Glucose (food) using the ATP generated as a source of energy.
Answer:
16.6 g of Al are produced in the reaction of 82.4 g of AlCl₃
Explanation:
Let's see the decomposition reaction:
2AlCl₃ → 2Al + 3Cl₂
2 moles of aluminum chloride decompose to 2 moles of solid Al and 3 moles of chlorine gas.
We determine the moles of salt:
82.4 g . 1mol/ 133.34g = 0.618 moles
Ratio is 2:2. 2 moles of salt, can produce 2 moles of Al
Then, 0.618 moles of salt must produce 0.618 moles of Al.
Let's convert the moles to mass → 0.618 mol . 26.98g /mol = 16.6 g
Rutherford's model shows that an atom is mostly empty space, with electrons orbiting a fixed, positively charged nucleus in set, predictable paths. ... It was after this that Rutherford began developing his model of the atom.