Answer:
1. The precession of the equinoxes.
2. Changes in the tilt angle of Earth’s rotational axis relative to the plane of Earth’s orbit around the Sun.
3. Variations in the eccentricity
Explanation:
These variations listed above; the precession of the equinoxes (refers, changes in the timing of the seasons of summer and winter), this occurs on a roughly about 26,000-year interval; changes in the tilt angle of Earth’s rotational axis relative to the plane of Earth’s orbit around the Sun, this occurs roughly in a 41,000-year interval; and changes in the eccentricity (that is a departure from a perfect circle) of Earth’s orbit around the Sun, occurring on a roughly 100,000-year timescale. which influences the mean annual solar radiation at the top of Earth’s atmosphere.
Answer:

Explanation:
<u>Instant Velocity
</u>
Given the position as a function of time x(t), the instant velocity is the derivative of the function:

We are given the position as

The derivative of x is

A) Let's compute v(0)

B)


C)


D)


The correct answer is the amoeba will deploy its pseudopods (cytoplasmic extentions) to capture the prey and phagocyte.
The amoeba most known and probably the most representative of the kind. Large (up to 500 microns), common in stagnant waters, extremely voracious as evidenced by multiple digestive vacuoles.
Amoebae are characterized by a deformable cell body emitting changes of shape, the pseudopods, which allow them to crawl on a support or to capture microscopic prey by phagocytosis.
Answer:
I think it is 2.5 kg.
Explanation:
I can say you do:
Fnet = m * a
So, you want to find mass:
m = Fnet / a
So, the answer you will receive is 2.5
Answer:
Explanation:
mass of the astronaut including the spacesuit, 
distance of astronaut from the spaceship, d = 13 m
mass of the oxygen tank, m = 3 kg
Speed of tank with respect to spaceship, 
a)
<u>Using the conservation of linear momentum:</u>
total momentum before collision = total momentum after collision



b)
She mush hold her breath until she reaches the spaceship, i.e.


