This question doesn't appear to be complete
Answer:
Red light
Explanation:
This because All interference or diffraction patterns depend upon the wavelength of the light (or whatever wave) involved. Red light has the longest wavelength (about 700 nm)
Answer:
The magnitude of the electric force on a protein with this charge is 
Explanation:
Given that,
Electric field = 1500 N/C
Charge = 30 e
We need to calculate the magnitude of the electric force on a protein with this charge
Using formula of electrostatic force

Where, F = force
E = electric field
q = charge
Put the value into the formula


Hence, The magnitude of the electric force on a protein with this charge is 
Answer:
112.23 m
Explanation:
Displacement is the final position minus the initial position.
Δx = x − x₀
Δx = 100.1 m − (-12.13 m)
Δx = 112.23 m
Answer:
Explanation:
Atoms form chemical bonds to make their outer electron shells more stable. ... An ionic bond, where one atom essentially donates an electron to another, forms when one atom becomes stable by losing its outer electrons and the other atoms become stable (usually by filling its valence shell) by gaining the electrons.